
Object-Centric Parallel Rigid Body Simulation With Timewarp
John Koenig, Ioannis Karamouzas, Stephen J. Guy

Department of Computer Science and Engineering

University of Minnesota

{koenig, ioannis, sjguy}@cs.umn.edu

Figure 1: A dynamic scene with two-hundred spheres falling onto five static cylinders. Our simulation approach is object-centric, with each
object modeled as a soft-thread and simulated independently. This results in scalable performance, achieving a 5-6X simulation speedup on
eight cores and 9-10X speedup on 16 cores.

Abstract

We present an object-centric formulation for parallel rigid body
simulation that supports variable length integration time steps
through rollbacks. We combine our object-centric simulation
framework with a novel spatiotemporal data structure to reduce
global synchronization and achieve interactive, real-time simula-
tions which scale across many CPU cores. Additionally, we provide
proofs that both our proposed data structure and our object-centric
formulation are deadlock-free. We implement our approach with
the functional programming language Erlang, and test the perfor-
mance and scalability of our method over several scenarios consist-
ing of hundreds of interacting objects.

CR Categories: I.6.8 [Simulation and Modeling]: Types of
Simulation—Parallel

Keywords: interactive real-time simulation, scalability, timewarp

1 Introduction

The number of computational cores available to the average con-
sumer is on the rise. This is partly due to the desire of chip man-
ufacturers to maintain Moore’s Law, but also to the recent afford-
ability of CPU accelerators [Tilera 2007; Parallela 2012]. In order

for game simulations to make use of modern, potentially heteroge-
neous platforms, methods for scalable and efficient real-time sim-
ulation are required. However, several challenges exist when ap-
plying the traditional frame-centric simulation pipeline in a parallel
setting. While it is easy to spread integration tasks across several
cores, collision detection/resolution becomes a primary challenge,
as traditional spatial data structures result in overly restrictive syn-
chronization, ultimately bottlenecking performance.

These factors motivate us to introduce an object-centric simulation
model along with a companion data structure which capitalizes on
spacetime assumptions common to physical simulations in order to
achieve a high-degree of parallelism. Runtime is improved further
by permitting objects to take dynamic timesteps that vary based
not only on individual state but also circumstances unfolding in the
surrounding scene.

Main Results. In this paper, we propose a framework for parallel
rigid body simulation on multi-core machines. The contributions
realized by this work are three-fold. First, we introduce an object-
centric model that simulates each scene object independently and
only enforces a minimal amount of global synchronization, thus al-
lowing excellent scalability across many cores. Second, we propose
a novel spatiotemporal data structure, which is designed to operate
in a parallel setting and capitalizes on locality assumptions common
to physically-based simulations. Third, we formally provide guar-
antees about the deadlock-freeness of our proposed data structure
and object-centric formulation.

Organization. The rest of this paper is organized as follows. Sec-
tion 2 highlights previous work in the area of parallel simulation
and Section 3 presents a high level overview of our framework.
A detailed explanation of our spatiotemporal data structure and
object-centric formulation are provided in Sections 4 and 5, respec-
tively, whereas experiments to test the performance of our tech-



nique are presented in Section 6. Finally, some conclusions and
plans for further research are discussed in Section 7.

2 Related Work

Previous work in the area of parallel simulation will be described in
this section. As our method builds directly on timewarp, this section
has been divided into two sections: approaches using timewarp and
other methods for parallelism in physical simulations.

2.1 Timewarp

Timewarp was originally presented in [Jefferson 1985] as a method
alleviating unnecessary synchronization for distributed systems
handling discrete events. Application of timewarp to rigid body
simulations was first presented in [Mirtich 2000]. This work placed
timewarp within a uniprocessor context and extended it to account
for rigid body dynamics in order to prevent unnecessary synchro-
nization between objects during narrowphase. Mirtich lays the
groundwork for applying timewarp within a parallel context, how-
ever his implementation was restricted to a single processor.

Most recently Ainsley et al. [2012] showed how to apply timewarp
to Asynchronous Contact Mechanics (ACM) [Harmon et al. 2009]
in order to achieve provably-correct, parallel simulations which are
computed significantly faster than ACM. This work, however, fo-
cused on parallelism at the frame level and obtains a realism which
is not geared towards an interactive setting.

Our work extends Mirtich’s original work into a multi-processor,
shared-memory context. To accomplish this, we utilize an object-
centric simulation model, as compared to [Ainsley et al. 2012]. In
addition, we introduce a novel spatiotemporal hash table to achieve
scalable real-time simulation.

2.2 Other Approaches

Timewarp has also been applied to domains beyond rigid body sim-
ulation. For example, Zheng and James [2011] used timewarp to
simulate sound propagation through a scene.

Dequidt et al. [2004] presented a framework in which each simula-
tion object is modeled autonomously. Each object governs its own
simulation loop and interactions between objects are driven by zone
agents which arbitrate a discrete cell of simulation space. Dequidt
et al. remarked that such a framework showed potential for het-
erogeneous simulations where objects were simulated at different
resolutions and with objects of differing types (i.e. rigid, soft, etc).

Allard et al. [2006] described a software engineering framework for
distributed real-time simulation which modularized compute nodes
into two categories: animators and interactors. Forces on objects
are computed in parallel by integrators from states received from
animators. Their modular approach allows for many different sim-
ulation techniques to exist in the same environment.

Thomaszewski et al. [2008a] developed a simulation technique for
physically based simulation which utilized parallel implicit integra-
tion and parallelized collision detection by way of fully dynamic
task decomposition. They proposed a task splitting approach which
estimates work based on analyses of previous simulation steps.
Thomaszewski et al. [2008b] demonstrated a similar technique to
cloth simulation using a asynchronous variational integrator which
realizes asynchronous simulation of cloth with high frequency de-
tails such as wrinkles and folds.

Data-flow analysis has also been applied to improve parallelism.
For example, Hermann et al. [2009] used task dependency graphs

to extract parallelism information at compile time. Hermann et al.
[2010] combined this approach with a two-level scheduler and task-
stealing to achieve parallel rigid body simulation in heterogeneous
CPU/GPU environments. Furthermore, Pingali et al. [2011] incor-
porated dependency graphs in the Galois framework to run several
parallel algorithms on multiprocessors systems.

Highly parallel continuous collision detection developed by Kim
et al. [2009] realizes continuous collision detection in hybrid
CPU/GPU environments by using CPUs to cull collisions before
performing continuous collision on GPU cores. Similarly, Pabst et
al. [2010] utilize spatial reasoning to realize efficient real-time sim-
ulation in hybrid CPU/GPU environments by using a highly parallel
spatial subdivision algorithm to cull simulated objects followed by
a GPU-based narrowphase. Focusing only on GPU collision de-
tection, Tang et al. [2011] present a fast steam based method for
collision detection between deformable models.

3 Overview

In this section, we describe our framework at a high level. We first
discuss how to simulate rigid bodies using an object-centric formu-
lation, and then highlight our proposed spatiotemporal data struc-
ture for obtaining highly scalable rigid body simulations.

Our framework adopts an object-centric simulation model, rather
than the traditional frame-centric approach. Each simulated rigid-
body (entity) within our framework is modeled as an independent
soft-thread which communicates with other entities only via mes-
sage passing. Each entity is self-contained, simulating itself locally
and maintaining its own local simulation time, referred to as Lo-
cal Virtual Time (LVT). LVT values are represented as integers and
correspond to the intended render time of the frame being simu-
lated. Our object-centric model permits entities to be simulated at
varied time steps depending on their individual state or scene condi-
tions. In this way, objects that are sufficiently isolated in spacetime
are able to take larger time steps. This saves computation time for
more demanding collisions occurring elsewhere and results in an
improved scalability.

Events between rigid-bodies (i.e., collisions) are modeled discretely
following the approach of Mirtich [2000]. These events occur at a
single moment in simulation time and they are realized as messages
exchanged between entities. Due to varying step sizes it becomes
possible for an entity to receive an event which occurs in its recent
past. In order to handle this case, each entity maintains a buffer
of recently computed physical states which enables each entity to
rollback to a previous point in its simulated time-line. Thus, each
entity is capable of successfully resolving events which occur in its
recent past. Causality is then maintained by use of antievents which
allows previously reported events to be undone when an entity rolls-
back and invalidates the event’s corresponding physical state.

Entities must undergo a minimal amount of synchronization in or-
der to collectively maintain a global notion of time, referred to as
Global Virtual Time (GVT). The value of GVT is defined as the
minimum of all entity LVTs. Once an entity computes a new physi-
cal state and, any corresponding events have been acknowledged by
other involved entities, each entity records its latest physical state
into a write parallel buffer for the given LVT value and increments
a shared counter. Conversely, during rollback, entities remove their
entries from this shared buffer, decrement the shared counter, send
corresponding antievents, and wait for acknowledgment. A frame
update is triggered when the counter for a given LVT value is equal
to the number of entities in the scene. As the last entity at a given
LVT value triggers the update, the value of GVT serves to partition
those physical states stored by entities into two classes: states oc-
curring at or before GVT are known and those occurring later are



gvt

Figure 2: Simulation of three objects within our framework. Each
circle depicts a simulation time step. Filled circles denote com-
pleted time steps. GVT is defined as the maximum over all com-
pleted time steps. Thus, states prior to GVT (outlined in red) can
be safely deleted.

not. This provides the primary mechanism for garbage collection
and deterministic frame generation. Figure 2 illustrates the role of
GVT, as well as rollback, within our framework.

To maintain efficient frame aggregation, LVT values are limited
to be a fixed step size away from GVT. When an entity inte-
grates forward in time it does so to this maximum upper bound.
This larger stride forward is then subdivided into smaller substeps,
and the resulting physical states are computed and recorded into
a highly-parallel commonly accessible temporal, volumetric hash-
table (TVHT). Should writing a physical state for a particular sub-
step result in contacts being reported by the TVHT, integration
stops on the given substep in which the contacts occurred and the
colliding entity synchronously reports collision events to all enti-
ties it made contact with. To achieve a high-degree of scalability,
the TVHT does not synchronize entities which are sufficiently sep-
arated in space or time (substep). Our framework does not require
users to predefine extents of the simulation space, but rather allows
entities to exist anywhere within R3. Details of TVHT are pre-
sented in the following section.

4 Parallel TVHT

In the parallel setting, traditional data structures (e.g. kd-trees, hash
tables, etc) require a great deal of synchronization to function which
ultimately limits the performance gains across many computational
cores. Furthermore, a majority of the synchronization in such data
structures is unnecessarily pessimistic [Mirtich 2000], as simulation
objects sufficiently separated in spacetime are synchronized just as
objects that are very close together.

To alleviate these issues, we adopt a spatial reasoning approach in-
spired by the “zone-agents” of Dequidt et al. [2004]. Our approach
combines spatial buckets with an efficient temporally-aware volu-
metric hash table in order to achieve fine-grained synchronization
for entities within our scenes. Rather than fixing the size of the sim-
ulated world by partitioning it to fixed-size cubes, buckets within
our framework moderate many regions of the simulated world.

Similar to entities, buckets are modeled as soft-threads within our
framework. A fixed number of buckets are started and enumer-
ated prior to simulation. Buckets support read, write, and delete as
atomic operations, as well as mutual exclusion via lock and un-
lock. Read and write operations are defined over the four-tuple
{P, V, T,B}, delete is defined over the triple {P, T,B}, and lock
and unlock are defined over {P,B} where P is the process iden-

tifier of the entity performing the operation, V is a physical state,
T ∈ N is an LVT value corresponding to V , and B ∈ Z3 is an
enumerated value for a particular volume of simulation space.

After each integration step, entities map an Axis-Aligned Bound-
ing Box (AABB), which over-approximates their physical extents,
to a set of buckets via volumetric hashing. Each entity then writes
its physical state for its current LVT to all selected buckets. In
response to a write, each bucket performs narrowphase collision
detection against every other physical state recorded within it that
happens to exist at the same LVT value and the same region of sim-
ulation space. A list of contacts, possibly empty, is generated and
returned by the bucket where the authoring entity aggregates con-
tact results from all selected buckets and issues the corresponding
collision events. This process is shown in Figure 3.

Simulation Space

A

C

B

Process Space

P1

P124

P175

{write, 46, C46}

{write, 32, B32}

{write, 16, A16}

{write, 32, A32}

[{A32, B32}]

{write, 16, B16}

Figure 3: Three entities: A, B, and C are depicted moving through
regions of simulation space at differing values of LVT. C is station-
ary while A and B approach each other and collide at LV T = 32.
After each substep each entity issues write commands at its current
LVT along with its current physical state to processes via volumet-
ric hashing. B writes second to P124 which results in the contact
{A,B} being reported to B.

Given that it is possible for entities to exist at different LVT val-
ues, each bucket maintains a set of previously reported physical
contacts. When an entity rolls-back, it deletes previously written
physical states for every invalidated LVT value. In response to a
delete, buckets return a list of previously reported contacts which
have been invalidated as a result of the delete action. Entities ag-
gregate invalidated contacts from each selected bucket, ignoring du-
plicates, and report antievents corresponding to each such contact
to the other affected entities.

A

B

VA

VB

1

2
write(A, 1)

write(B, 2)

write(B, 1)

write(A, 2)
2: [{A, B}]1: [{A, B}]

Figure 4: Left: Two objects, A and B, collide while each occupying
bucket 1 and 2 at a given LVT. Right: Potential ordering of write
operations which results in bucket 2 returning {A,B} to entity A
and bucket 1 also returning {A,B} to entity B.

Maintaining contacts in this fashion allows writes and deletes to
occur in any order, which can result in the same contact being de-
tected by separate entities, as shown in Figure 4, as well as stale



contacts reported for physical states which will be soon deleted.
While the rollback mechanism is general enough to handle the lat-
ter, mutual exclusion must be applied in order to prevent applying
forces from multiple contacts more than once. As such, each entity
first obtains the lock for every region of simulation space prior to
performing write or delete operations during integration or rollback.
Algorithm 1 details our approach to locking.

Algorithm 1: Bucket locking procedure.
Input: AABBs, BucketSize
BucketIds← ∅;
for AABB ∈ AABBs do

Temp← enumerate(AABB,BucketSize);
BucketIds← BucketIds ∪ Temp;

end
BucketIds← sortAscending(BucketIds);
for Id ∈ BucketIDs do

BucketPID ← hash(Id);
lock(BucketPID, Id);

end

Obtaining locks in Algorithm 1 is done carefully in order to avoid
deadlock. More formally:

Lemma 1. Algorithm 1 is deadlock-free.

Proof: A deadlock can occur only if obtaining resources satisfies
the circular wait condition [Coffman et al. 1971]. As N3 is count-
able, bucket identifiers can be sorted into a lexicographical order-
ing. By locking in lexicographical order, we are assured that all
buckets are locked in an increasing manner. As an entity can hold
the lock for a given bucket once, the circular wait condition is elim-
inated. Thus, the TVHT locking procedure is deadlock-free.

In the following section we present proofs of correctness for our
simulation protocol. In doing so, we rely on the following assump-
tions regarding entity interactions with the TVHT:

1. Contacts are not reported twice to distinct entities. While in-
tegrating, entities first obtain locks for all buckets relevant to
their motion over the entire step.

2. Invalidated contacts are not reported twice to distinct entities.
Similar to the previous case. Entities deleting values from the
TVHT as when rolling-back first obtain locks for all affected
buckets over the entire rollback period.

5 Object-Centric Simulation Protocol

As mentioned in Section 3, entities are represented within our
framework as soft-threads. Instead of being scheduled directly by
the operating system each entity places tasks on one of several task
queues [Mohr et al. 1991], one per core. Each queue has assigned to
it a dedicated scheduler, an actual hardware thread, which executes
each task in turn starting from the head of their respective queue.

Our object-centric simulation protocol contains three phases: step,
rollback, and resolve. As an object integrates through time, it will
move through these various phases based on its interactions with
other objects. Each of these phases has a different role in maintain-
ing efficient, deadlock-free simulation. In the step phase, entities
integrate themselves forward in time. If an entity detects a new con-
tact during the step phase, it will move to the resolve phase where
it waits for each contacted entity to acknowledge that they have re-
ceived and resolved the corresponding collision. At any point in

step or resolve it is possible for an entity to receive an event, or
antievent, occurring in its past. When this occurs, the receiving
entity abandons its current phase and immediately enters the roll-
back where the entity proceeds to rollback its physical state to the
time the event occurred. Every physical state occurring after the
event is deleted from the TVHT which may result in synchroniza-
tion with other entities resulting from antievents. Unlike step and
resolve, rollback is un-interruptible. An entity will only leave roll-
back when there are no more pending antievent acknowledgments
or events occurring in the past. A finite state machine representing
entities within our framework is given in Figure 5.

Notations and Definition: An entity’s state is described by the
tuple {LVT, LV Tub, Substep, Phy, Input, Done, Pending, Phys},
where LVT is the entity’s current LVT value, LV Tub is the maxi-
mum allowed value of LVT given the current value of GVT, Substep
is the rollback granularity in milliseconds, Phy is the latest physi-
cal state corresponding to LVT, Input is a queue of pending events
in ascending order based on the LVT value when the event origi-
nated, Done is a similarly ordered set of events which have already
been processed, Pending is a set of event identifiers still awaiting
acknowledgment, and Phys an ordered key-value store mapping
previous LVT values to their corresponding physical states.

Note, we limit our discussion of each phase to only the generation
and acknowledgement of events and antievents as these interactions
between entities are relevant to correctness of our protocol. Proofs
of correctness follow immediately after presentation of the three
phases in the following subsections. For brevity, we assume the
existence of the following functions in our presentation:

1. receive and receive tmo. Both functions receive a message
from an entity’s message queue with the latter supporting a
single argument which allows the user to specify a timeout.

2. insert, delete, peek, exists. Common queue operations.

3. ack. Sends the acknowledgement for an event or antievent to
the other involved entity.

All other functions used in pseudocode are listed in Appendix A.

Resolve

Rollback

Step

Pending == []

Pending != []

Antievent
Event.lvt < LVT

Pending == []
Antievent
Event.lvt < LVT

Figure 5: Formulation of a simulation entity, capable of rollback,
as a finite-state-machine.

5.1 Step

Entities in the step state attempt to integrate themselves forward in
time. Events received while in this phase are placed into the sorted
Input queue. Receiving an antievent immediately interrupts this



process, resulting in the entity entering rollback after removing
the corresponding event from Done. Once no more messages are
able to be received the entity immediately times-out and one of two
cases applies, either: the head of the sorted Input queue is an event
in the entity’s recent past (resulting in rollback) or it is not. Step is
demonstrated in Algorithm 2.

As noted in the previous section, entities which are integrating for-
ward in time must first obtain the locks for all buckets affected by
its motion. This is accomplished by first computing all the physical
states for each substep over the step interval. After which, bounds
can be computed and used to lock the TVHT prior to the integrat-
ing entity writing its physical states for each substep into the TVHT.
Writing of physical states continues to the earliest substep in which
contacts are detected, or the last if none are reported.

Algorithm 2: Step phase.

Msg ← receive tmo(0);
switch Msg.type do

case Event
Input.insert(Msg);

case Antievent
Done.delete(Msg.id);
rollback(Msg.lvt);
ack(Msg);

case NULL
// Timeout
Event← Input.peek();
if Event.lvt < LV T then

rollback(Event.lvt);
else

stepTowardsLVTub();
if Pending 6= ∅ then resolve();

endsw

5.2 Resolve

In order to be GVT-invariant, every entity must ensure that each
event it generates has been fully applied to the system before pro-
ceeding to its next LVT value. To accomplish this, we require ev-
ery reported event to be acknowledged by the receiving entity be-
fore the reporting entity is allowed to resume integration forward in
time. Enforcing this policy is the role of the resolve phase. The
phase itself operates very simply, blocking-and-waiting for all event
acknowledgments corresponding to events stored in the Pending
buffer. Resolve is interrupted when either an antievent or event
occurring in the past is received. In both cases the receiving entity
immediately enters rollback. Resolve is described in Algorithm 3.

5.3 Rollback

Similar to events, antievents must also be synchronously acknowl-
edged in order to maintain GVT. The rollback phase blocks-
and-waits for antievent-acknowledgments for each antievent in its
Pending buffer. rollback differs from step and resolve primarily
in that: rollback is the only phase which is nondeterministic (i.e.
rollback applies itself recursively, adding more antievents to the
Pending buffer) and rollback will not change to a different phase
before all pending antievents have been acknowledged. Rollback
is presented in Algortihm 4.

Algorithm 3: Resolve phase.

while Pending 6= ∅ do
Msg ← receive();
switch Msg.type do

case EventAck
Pending.delete(Msg.id);

case Antievent
if Pending.exists(Msg.id) then

Pending.delete(Msg.id);
else

Pending ← ∅;
Done.delete(Msg.id);
rollback(Msg.lvt);
ack(Msg);

case Event
Input.insert(Msg);
if Msg.lvt < LV T then

Pending ← ∅;
rollback(Msg.lvt);

endsw
end

5.4 Protocol Correctness

To demonstrate the correctness of our approach we will show that
any two entities in any valid combination of phases are deadlock-
free. As two entities can only deadlock when the circular wait con-
dition is met, we restrict our consideration to points of synchroniza-
tion between entities in all possible cases. We prove our protocol
to be deadlock-free in the following combinations of phases: step-
step, resolve-resolve, resolve-step, rollback-step, rollback-resolve,
and rollback-rollback. While this may not be sufficient to rigor-
ously prove deadlock-freeness for all possible configurations of N
entities, in practice our methods scale successfully to include hun-
dreds of objects frequently colliding.

We first present a proof which demonstrates that two entities in
step will not deadlock, followed by proofs for step-resolve and
resolve-resolve. We conclude this section with a proof demonstrat-
ing that entities are deadlock-free when one entity is in rollback.

Lemma 2. Two entities in step are deadlock-free.

Proof: Only one point of synchronization occurs between two en-
tities in step, the locking of TVHT buckets during integration. We
have already proven that the TVHT locking procedure is deadlock-
free, as shown in lemma 1. Therefore step is also deadlock-free.

Lemma 3. step-resolve and resolve-resolve are deadlock-free.

Proof: Let A, B be entities s.t. A is in resolve waiting on ac-
knowledgement of an event, E, from B which is in either step or
resolve. Each unique pairing of these phases are considered below:

1. resolve-step. B’s response to E varies based on the time
the event occurred. As we know that A.LV T = E.LV T we
consider the following two cases:

(a) A.LV T ≥ B.LV T . B places E event onto its Input
queue. As A.LV T ≥ B.LV T we know that on a fu-



Algorithm 4: Rollback phase.
Data: PrevLV T , an LVT value in the past.
Invalid← [P |{PLV T, P} ∈ Phys, PLV T > PrevLV T ];
rollbackState(PrevLV T , Invalid);
while Pending 6= ∅ do

Msg ← receive();
switch Msg.type do

case AntieventAck
Pending.delete(Msg.id);

case EventAck
// Occurs when resolve enters
// rollback. Ack has no effect.

case Antievent
if Input.exists(Msg.id) then

Input.delete(Msg.id);
else

Done.delete(Msg.id);
rollback(Msg.lvt);
ack(Msg);

case Event
Input.insert(Msg);
if Msg.lvt < LV T then rollback(Msg.lvt);

endsw
end

ture integration step for B that B.LV T = A.LV T . At
which time, B will process E and send A the acknowl-
edgement.

(b) A.LV T < B.LV T . Upon receiving E, B immedi-
ately rolls-back to E.LV T and places E onto its input
queue. After rollback A.LV T = B.LV T and, as we
have seen in the previous case, B will acknowledge E.

2. resolve-resolve. As B is also in resolve we know that it
must be waiting on acknowledgement of an event, EB , from
A. As before, our proof depends on the relation between
A.LV T and B.LV T :

(a) A.LV T < B.LV T or B.LV T < A.LV T . w.l.o.g
assume that A.LV T < B.LV T . As B generated EB

from a contact reported from the TVHT it must be case
that A wrote a physical state to the TVHT correspond-
ing to B.LV T . As A.LV T < B.LV T it must be that
B received a contact just prior to A undoing said con-
tact as part of rollback. However, this cannot be true,
as then A would be in rollback awaiting acknowledge-
ment of an antievent for EB . This is a contradiction as
A is in resolve. Therefore, our previous assumption is
false and this case is impossible.

(b) A.LV T = B.LV T . Again, this leads to a contradic-
tion. TVHT enforces the invariant that a collision event
between two entities at the same LVT value cannot be
detected by two different entities.

Lemma 4. All combinations of two phases where one phase is
rollback are deadlock-free.

Proof of this lemma is listed in Appendix B. Lemmas 1-4 together

demonstrate our protocol is deadlock-free.

6 Results

We implemented our approach using Erlang, a functional pro-
gramming language with support for concurrent operations [Arm-
strong et al. 1996]. We tested our framework over 16 cores of
an Intel(R) Xeon(R) CPU E5-2670 (Sandy Bridge) operating at
2.60GHz. Tests were done over various scenarios, with different
numbers of cores utilized. All times reported are only for simula-
tion, rendering was performed offline. Results were obtained using
Erlang’s interpreter, having disabled its native code compiler HiPE.

6.1 Scenarios

We analyzed the performance of our framework on the three sce-
narios described below.

(a) Parallel Scenario (b) Bouncing Scenario

Figure 6: Experimental Scenarios (a) Columns of spheres move in
parallel motion. (b) Spheres bounce on walls of a translucent cube.

Parallel: In this scenario, two columns of spheres move past the
camera at a constant velocity (Figure 6a). This scenario was tested
with both 200 and 500 spheres. Because there are no collisions
or rollback, this scene provides a baseline as best-case scenario in
terms of scalability.

Cylinders: In this scenario, a stack of spheres falls onto a static
array of cylinders (Figure 1). This scenario was tested with both
200 and 500 spheres. It features thousands of collisions, rollbacks
and pair-wise interactions.

Bouncing: In this scenario, several balls bounce off a translucent
box (and each other) (Figure 6b). This scenario was tested with 200
spheres, randomly initialized in boxes of various sizes (from 100m3

to 400m3). We also varied the numbers of spheres in a fixed scene
size of 250 m3 to measure performance. The amount of collisions
and synchronization increases as the scenario density increases.

6.2 Scalability

We first analyze the scalability of our approach as a function of the
number of cores. Figure 7 reports the runtime speedup across 16
cores over all three scenarios for both 200 and 500 objects. All sce-
narios scale well up to 8 cores, with a speedup of between 5X and
6.5X. On 16 cores, the Cylinders scenario with 200 objects failed
to perform significantly faster than with 8 cores. This is likely due,
in part, to there not being enough entities in the scene to keep all
16 cores busy. We also note that the Bounce scenario achieves a 7x
speedup on 16 cores in both the 200 and 500 object case. The con-
fined state of the spheres in the Bounce scenario limits the number



0 

2 

4 

6 

8 

10 

12 

14 

1 2 4 8 16 

S
pe

ed
up

 

# of Cores 

Parallel-500 

Cylinders-500 

Parallel-200 

Cylinders-200 

Bounce-200 

Bounce-500 

Figure 7: Parallel Speedup Scalability of all three scenarios across
various number of cores. With only 200 objects, the Cylinders sce-
nario scales well to 8 cores. With larger number of objects both the
Cylinders and Parallel scenarios scale well up to 16 cores (9X or
more).

of buckets available which results in a persistently higher degree of
synchronization. For the other scenarios, with more objects or less
collisions, we see scalability up to 16 cores, with speedups between
9.5X and 11X.

Further insight into scalability can be gained by looking into a
breakdown of what percentage of the runtime each activity takes
while being run with various numbers of cores. Figure 8 shows
the runtime breakdown of various functions for the Cylinders sce-
nario with 500 objects. As it can be seen in this figure, checking
for collisions in the TVHT occupies more than half of the runtime,
with the rest of the cost primarily being split between responding
to a GVT update event and other overhead (e.g., language runtime
environment). Neither integration nor processing rollback events
contribute significantly to the overall runtime. Figure 8 also demon-
strates that collision checking still scales sub-linearly even with our
TVHT data structure. This is because two entities that collide must
synchronize with each other, reducing the overall parallelism.

0 

5 

10 

15 

20 

25 

1 2 4 8 16 

Si
m

ul
at

io
n 

Ti
m

e 
 p

er
 F

ra
m

e 
(m

s)
 

# of Cores 

Other 

GVT Update 

Rollback 

Commit 

Collision Check 

Integration 

Figure 8: Runtime Breakdown Simulation profile of the Cylinders
scenario with 500 objects across varying number of cores. Run-
time is dominated by collision checking, and to a lesser extent syn-
chronizing GVT between objects, and other runtime costs such as
language overhead.

The density of objects in the scene can have important effects on
the scalability of the simulation. As previously discussed, increas-
ing the frequency of interactions tends to reduce the amount of

possible parallelism. We explored this effect in the Bouncing sce-
nario, where we varied the volume of the container the balls were
bouncing in from 100m3 to 400m3. The results are reported in Fig-
ure 9. As can be seen here, the simulation time decreases (and per-
formance increases) as the simulation density decreases. We note
though that in all cases, the performance was realtime and scaled to
9X or larger on 16 cores.

14	  

14.5	  

15	  

15.5	  

16	  

16.5	  

17	  

50	   100	   150	   200	   250	   300	   350	   400	  

Si
m
ul
a'

on
	  T
im

e	  
pe

r	  
Fr
am

e	  
(m

s)
	  

Scene	  Size	  (m)	  

Figure 9: Scene Density Analysis The density of the scenario can
affect the overall performance. Here the Bouncing scene is sim-
ulated with 200 obstacles on 16 cores with a varying size of the
container box. As the density decreases the performance increases.

6.3 Dynamic Step Size

Beyond allowing for good scaling across multiple cores, our pro-
posed object-centric implementation of timewarp allows objects to
take large step sizes, refining only as needed when collisions are de-
tected across spacetime in the TVHT. These large timesteps allow
us to see large performance gains in scenarios such as Cylinders
and Parallel where objects interact infrequently by speculatively
simulating into the future and only rolling back when necessary.
Figure 10 shows the advantage gained from these large timesteps
in terms of runtime performance. As larger values of LV Tub are
allowed, faster performance is observed. This increase in perfor-
mance is related, in part, to a decrease in lock contention resulting
from entities taking larger time steps and locking less frequently. In
our experiments, the effect of the larger timesteps began to plateau
around 256ms, but the overall benefit varies from scene to scene.
These gains are diminished for the Bounce scenario where colli-
sions are frequent.

100 

200 

300 

400 

500 

600 

0 32 64 96 128 160 192 224 256 

Fr
am

e 
R

at
e 

(fp
s)

 

LVTUB (ms) 

Parallel&200)

Cylinders&200)

Bounce&200)

Figure 10: Large Timestep Analysis As the per-object timestep size
increases, simulations performance also improves. If the timestep is
too large for collision-free motion, objects will rollback to the frame
on which the collision occurs. These gains are dimished for the
Bounce scenario where collisions are frequent. Results collected
on 16 cores.



7 Conclusion and Future Work

We have presented a framework for parallel simulation of rigid bod-
ies across many CPU cores. Our framework combines an object-
centric simulation model with a novel highly-parallel, spatiotempo-
ral data structure. We have demonstrated its scalability and runtime
performance through various scenarios. In all of our experiments,
simulations scale well over many cores. Furthermore, the runtime
performance of our simulations improve as objects increase their
simulation timestep.

Limitations: The proposed framework has some limitations. As
noted previously, the degrees of freedom of each entity plays a large
role in our framework’s ability to effectively make use of all avail-
able computational cores. Scenes where all entities exist in persis-
tent contact with one another will currently not see any substantial
runtime speedup as entities in the scene synchronize at every sub-
step with their immediate neighbors. In order to handle these sce-
narios as effectively as possible our method needs to be extended to
explicitly model this form of persistent contact. Adapting the mass
splitting approach proposed by Tonge et al. [2012] to our object-
centric formulation shows promise.

Future Work: There are many avenues for future research. For
one, we would like to investigate how are framework can be ex-
tended over many nodes. This is an important step towards im-
plementing a scalable peer-to-peer network that will allow us to
efficiently distribute virtual worlds over many machines and spread
network and simulation costs across all computers actively partic-
ipating in the simulation. Connecting entities into Voronoi-based
peer-to-peer networks [Hu et al. 2006] provides some interesting
ideas in this direction.

Prevalence of GPU-based simulation methods prompts us to also
investigate extending our framework to include heterogeneous
CPU/GPU environments. Introducing a GPU will create another
point of synchronization between entities sharing the GPU. As
such, additional techniques for batch scheduling GPU tasks need
to be investigated.

We would also like to explore methods to improve the overall run-
time performance of our framework. For example, our current
implementation uses interpreted Erlang modules, which may slow
down the runtime. Exploiting natively compiled modules will likely
improve performance at the cost of portability.

Acknowledgements

This work was supported in part by the University of Minnesota
Supercomputing Institute.

References

AINSLEY, S., VOUGA, E., GRINSPUN, E., AND TAMSTORF, R.
2012. Speculative parallel asynchronous contact mechanics.
ACM Transactions on Graphics 31, 6, 151.

ALLARD, J., AND RAFFIN, B. 2006. Distributed physical based
simulations for large VR applications. In Virtual Reality Confer-
ence, 2006, IEEE, 89–96.

ARMSTRONG, J., VIRDING, R., WIKSTR, C., WILLIAMS, M.,
ET AL. 1996. Concurrent programming in ERLANG. Prentice
Hall.

COFFMAN, E. G., ELPHICK, M., AND SHOSHANI, A. 1971. Sys-
tem deadlocks. ACM Computing Surveys 3, 2, 67–78.

DEQUIDT, J., GRISONI, L., AND CHAILLOU, C. 2004. Asyn-
chronous interactive physical simulation. Rapport de recherche,
INRIA.

HARMON, D., VOUGA, E., SMITH, B., TAMSTORF, R., AND
GRINSPUN, E. 2009. Asynchronous contact mechanics. ACM
Transactions on Graphics 28, 3, 87.

HERMANN, E., RAFFIN, B., FAURE, F., ET AL. 2009. Interactive
physical simulation on multicore architectures. In Eurographics
Workhop on Parallel Graphics and Visualization, 1–8.

HERMANN, E., RAFFIN, B., FAURE, F., GAUTIER, T., AND AL-
LARD, J. 2010. Multi-gpu and multi-cpu parallelization for in-
teractive physics simulations. In Euro-Par 2010-Parallel Pro-
cessing. Springer, 235–246.

HU, S.-Y., CHEN, J.-F., AND CHEN, T.-H. 2006. Von: a scalable
peer-to-peer network for virtual environments. Network, IEEE
20, 4, 22–31.

JEFFERSON, D. R. 1985. Virtual time. ACM Transactions on
Programming Languages and Systems 7, 3, 404–425.

KIM, D., HEO, J.-P., HUH, J., KIM, J., AND YOON, S.-E. 2009.
Hpccd: Hybrid parallel continuous collision detection using cpus
and gpus. In Computer Graphics Forum, vol. 28, Wiley Online
Library, 1791–1800.

MIRTICH, B. 2000. Timewarp rigid body simulation. In Proceed-
ings of the 27th annual conference on Computer graphics and
interactive techniques, ACM Press/Addison-Wesley Publishing
Co., SIGGRAPH ’00, 193–200.

MOHR, E., KRANZ, D. A., AND HALSTEAD JR, R. H. 1991.
Lazy task creation: A technique for increasing the granularity
of parallel programs. Parallel and Distributed Systems, IEEE
Transactions on 2, 3, 264–280.

PABST, S., KOCH, A., AND STRASSER, W. 2010. Fast and scal-
able cpu/gpu collision detection for rigid and deformable sur-
faces. In Computer Graphics Forum, vol. 29, Wiley Online Li-
brary, 1605–1612.

PARALLELA, 2012. http://www.parallella.org/.

PINGALI, K., NGUYEN, D., KULKARNI, M., BURTSCHER, M.,
HASSAAN, M. A., KALEEM, R., LEE, T.-H., LENHARTH, A.,
MANEVICH, R., MÉNDEZ-LOJO, M., ET AL. 2011. The tao
of parallelism in algorithms. In ACM SIGPLAN Notices, ACM,
12–25.

TANG, M., MANOCHA, D., LIN, J., AND TONG, R. 2011.
Collision-streams: fast gpu-based collision detection for de-
formable models. In Symposium on Interactive 3D Graphics and
Games, ACM, 63–70.

THOMASZEWSKI, B., PABST, S., AND BLOCHINGER, W. 2008.
Parallel techniques for physically based simulation on multi-core
processor architectures. Computers & Graphics 32, 1, 25–40.

THOMASZEWSKI, B., PABST, S., AND STRASSER, W. 2008.
Asynchronous cloth simulation. In Computer Graphics Inter-
national.

TILERA, 2007. http://www.tilera.com/.

TONGE, R., BENEVOLENSKI, F., AND VOROSHILOV, A. 2012.
Mass splitting for jitter-free parallel rigid body simulation. ACM
Transactions on Graphics 31, 4, 105.

ZHENG, C., AND JAMES, D. L. 2011. Toward high-quality modal
contact sound. ACM Transactions on Graphics 30, 4, 38.



A Supplemental Pseudocode

The following algorithms detail helper functions used in Section 5.

Algorithm 5: stepToLVTub

Substeps← [LV T . . . LV TUB by Substep];
Nphys← ∅;
Nphy ← Phy;
foreach S ∈ Substeps do

Events← [E ∈ Input|E.lvt = S];
foreach E ∈ Events do

Nphy ← applyEvent(E, Nphy);
end
Nphy ← integrate(Substep,Nphy);
Nphys.insert(Nphy);

end

Algorithm 6: stepState
Input: Ordered set of LVT values, Substeps, and a parallel set of

physical states, Nphys.
Bounds← [bound(P )|P ∈ Nphys];
tvht lock(Bounds);
foreach {S,B, P} ∈ zip(Substeps,Bounds,Nphys) do

Events← [E ∈ Input|E.lvt = S];
foreach E ∈ Events do

ack(E);
end
LV T ← S;
Phys.insert({S, P});
Input← Input \ Events;
Done← Done ∪ Events;
Contacts← tvht write(Bound, P );
if Contacts 6= ∅ then

Pending ← generateCollisionEvents(Contacts);
sendEvents(Pending);
break;

end
tvht unlock(Bounds);

B Additional Proofs

Lemma 4. All combinations of two phases where one phase is
rollback are deadlock-free.

Proof: Let A, B be entities such that A is in rollback waiting on
an antievent, Antievent, acknowledgement from B. As rollback
is recursive, we first demonstrate that this process will terminate.
This is trivial, however, given that rollback always results in an
entity existing at an LV T value less than its LV T value prior to
rollback and that the value of LV T is bounded below by GV T .
Therefore, we are assured that A, B will only rollback finitely
many times.

We continue our proof by showing all points of synchronization for
all possible phases of B are deadlock-free.

1. B is in step.

In this case, the only point of synchronization between A, B is
the locking of buckets during stepState and rollbackState.
We have already demonstrated the locking of buckets to
be deadlock-free in lemma 1. Thus, B is able to process
Antievent and send an acknowledgement to A.

Algorithm 7: rollbackState
Input: A previous LVT value, PrevLV T , and Invalid, a set of

invalid physical states.
Bounds← [bound(Phy)|Phy ∈ Invalid];
tvht lock(Bounds);
foreach I ∈ Invalid do

BadContacts← tvht delete(I);
Antievents← generateAntievents(BadContacts);
Pending ← Pending ∪Antievents;

end
tvht unlock(Bounds);
LV T ← PrevLV T ;
Phys← [{T, P}|{T, P} ∈ Phys, T < PrevLV T ];
Replay ← [E ∈ Done|E.lvt > PrevLV T ];
Replay ← [E ∈ Replay|∀A ∈ Antievents,A.id 6= E.id];
Input← [E ∈ Input|∀A ∈ Antievents,A.id 6= E.id];
Input← Input ∪Replay;
Done← [E ∈ Done|E.lvt ≤ PrevLV T ];

2. B is in rollback. As B is in rollback and synchronized
with A it must be awaiting acknowledgement of an antievent,
AntieventB from A. As locking over the TVHT is atomic
for the entire rollback period we can be assured that the
antievent of A does not correspond to the same event as
B’s. Furthermore, as events are defined as occurring at a
given time between two entities, therefore Antievent.lvt 6=
AntieventB .lvt. w.l.o.g. we examine two cases from the
perspective of B:

(a) Antievent.LV T < B.LV T . B then rolls-back as
previously described and breaks the deadlock. As A
will await acknowledgment from B, we know that B
will not run into conflict attempting to process multiple
antievents from A.

(b) Antievent.LV T > B.LV T . We know, then, that A
and B have rolled back over different, but overlapping
regions of spacetime. Also, it must have been the case
that A obtained all of its locks for the TVHT first, as B
was not the entity which received the invalidated con-
tact between itself and A. As B has already rolled back
to a previous point in time, it is safe for B to simply
acknowledge Antievent as it has, or will, synchronize
with all other entities affected by this later rollback.

3. B is in resolve. Thus, B must be awaiting acknowledge-
ment of an event, E from A. Again, we consider the relation
between B.LV T and Antievent.LV T :

(a) B.LV T ≤ Antievent.LV T . A has undone a colli-
sion in B’s past. B is preempted and enters rollback
acknowledging Antievent after successfully rolling-
back to, or before, Antievent.LV T .

(b) B.LV T > Antievent.LV T . This case emerges when
B rolls-back after A but to an earlier value of LV T .
As B would have undone the same contact as part of its
rollback, B simply acknowledges Antievent .


