
Online Learning for Multi-Agent Local
Navigation

Julio Godoy, Ioannis Karamouzas, Stephen J. Guy, and Maria Gini

Department of Computer Science and Engineering, University of Minnesota
godoy@cs.umn.edu,ioannis@cs.umn.edu,sjguy@cs.umn.edu,gini@cs.umn.edu

Abstract. In this paper, we present an adaptive framework for improv-
ing the local navigation in multi-agent simulations. Our framework uses
techniques from Reinforcement Learning allowing the agents to adapt
their behavior online while the simulation is still running. It is general
and can be easily combined with existing schemes for local navigation. As
an example, we demonstrate its application using the Optimal Reciprocal
Collision Avoidance method introduced in robotics. Preliminary results
show that, using our adaptive approach, the agents exhibit a more polite
and respectful behavior toward each other, as compared to approaches
that do not use learning. This alleviates congestion phenomena observed
in non-adaptive local navigation methods and helps the agents reach
their goal destinations faster.

Keywords: Crowd simulation, multi-agent navigation, online learning,
reinforcement learning

1 Introduction

Over the past two decades many new methods have been proposed for modeling
the dynamics of agents moving together in virtual environments. Such techniques
have important applications, such as guiding the motion of characters in video
games, simulating human crowds for planning and analysis, and coordinating
teams of robots. Our work seeks to extend these types of models by incorporating
principles from Reinforcement Learning (RL) into local navigation methods for
agents in virtual environments.

In this work, we assume that each entity in the virtual environment can
be simulated with a Belief-Desire-Intention (BDI) Agent. That is, an agent is
viewed as a dynamic entity that makes independent decisions. These agents have
distinct characteristics and goals and can plan their own movements individually
by continuously perceiving their surroundings and (re)acting accordingly. We
also assume that the desired global motion of each agent is predetermined and
thus focus on improving the local behavior of how agents interact with each
other.

The local interaction and navigation problem between agents moving in vir-
tual and physical environments is a well studied problem. Recent advancements
have significantly improved the ability of the agents to interact with each other

2 Julio Godoy, Ioannis Karamouzas, Stephen J. Guy, and Maria Gini

and the environment in a realistic fashion. For example, current state-of-the-
art techniques can guarantee collision-free motion between agents as they reach
their goals [1]. However, for truly intelligent behavior, the agents need to move
beyond simply avoiding collisions and display the ability to adapt intelligently
to their changing environments.

Consider, for example, a number of agents trying to pass through a narrow
passage (e.g., Fig. 2b in Section 6). As new agents enter the scene, congestion
conditions evolve in front of the bottleneck, due to the fact that the agents
are continually competing for the same free space. In these type of scenarios,
humans have the ability to adapt their behavior based on the situation at hand.
For example, many people will let the congestion dissipate before trying to enter
the passageway, saving energy and increasing the overall flow rates. It is this
type of intelligent reaction to one’s environment which we seek to reproduce in
simulated agents.

In this paper, we present a framework for improving the local navigation
of agents in crowd simulations by incorporating techniques from Reinforcement
Learning. Our main contribution is that, in our method, agents adapt their
behavior online while the simulation is running. As a result, the agents are im-
plicitly rewarded for cooperation which leads them to exhibit a more “polite”
behavior toward each other, in comparison to non-adaptive agents. This allevi-
ates congestion phenomena observed in non-adaptive local navigation methods
and lets the agents reach their goal destinations faster. Our technique can be
easily combined with many existing schemes for local collision avoidance. As
an example, we demonstrate its application using the ORCA local navigation
technique proposed in [1].

The rest of the paper is organized as follows. Section 2 provides an overview
of prior work related to our research. In Section 3, we provide a more formal
definition of the local navigation problem and highlight the potential role of
learning approaches. A full explanation of our proposed framework is presented
in Section 4, and details of our learning approach are given in Section 5. We
review our experimental results in Section 6. Finally, some conclusions and plans
for further research are discussed in Section 7.

2 Related Work

In this section, we highlight some of the most relevant work in crowd simulation,
local navigation and reinforcement learning. We refer the interested readers to
the excellent survey of Pelechano et al. [2] and Buşoniu et al. [3] for a more
comprehensive discussion.

2.1 Crowd Simulation and Local Navigation

Numerous models have been proposed to simulate individuals, groups and crowds
of interacting agents. The seminal work of Reynolds on boids has been influential
in this field [4]. Reynolds used simple local rules to create visually compelling

Online Learning for Multi-Agent Local Navigation 3

flocks of birds and schools of fishes. Reynolds later extended this model to in-
clude autonomous reactive behavior [5]. Since his original work, many interesting
crowd simulation models have been introduced that account for cognitive and
behavioral rules [6, 7], sociological or psychological factors [8–10], and biome-
chanical principles [11].

An extensive literature also exists on modeling the local dynamics of the
agents and computing a collision-free motion among static and/or dynamic ob-
stacles. Over the past twenty years many different agent-based techniques for
local collision avoidance have been proposed in control theory, traffic simula-
tion, robotics and animation. These include force-based approaches which treat
agents as particles and model their interactions using physical forces [5, 12, 13],
vision techniques which combine visual stimuli with motor response laws to
adapt the agents’ velocities and resolve collisions [14], and geometrically-based
algorithms which compute collision-free velocities for the agents using either
sampling [15–17] or optimization techniques [1, 18]. Our framework also uses a
well-known geomatrically-based algorithm for local navigation, and enhances it
with an online learning component, that allows agents to improve their behavior
while the simulation is running.

2.2 Multi-Agent Reinforcement Learning

Reinforcement Learning (RL) is a popular machine learning technique which
addresses how autonomous agents can learn to act in an environment in order to
achieve a desired goal [19]. A RL agent performs actions that affect its state and
environment, and receives a reward value indicating the quality of the performed
action and state transition. This reward is used as feedback for the agent to
make better future decisions. Algorithms for agent Reinforcement Learning have
been widely used for applications as diverse as robotics [20], game theory [21],
scheduling [22], path-planning [23], and many others.

A well known family of RL algorithms is based on the Temporal Difference
(TD) prediction approach introduced in [19], which is a combination of Monte
Carlo sampling methods and dynamic programming for learning in environments
that are formulated as Markov Decision Processes. The most well known of these
algorithms is Q-learning [24], in which agents learn an action-value function that
estimates the expected reward of choosing a specific action in a given state and
following a fixed policy afterwards.

Different approaches have also been proposed to incorporate learning when
multiple agents are present in a simulation scenario (see [3, 25] for an extensive
overview). These multi-agent learning approaches originate both from extensions
of RL algorithms and applications of game theory. However, most of them are
focused on small problems and/or a very limited number of agents. RL algo-
rithms need to collect information on how all agents behave in order to find a
policy that maximizes their reward. This is expensive when the state space is
too large and requires a significant degree of exploration to create an accurate
model for each agent. Game theory algorithms are focused on proving properties
of convergence and equilibrium requiring the agent to have previous knowledge

4 Julio Godoy, Ioannis Karamouzas, Stephen J. Guy, and Maria Gini

of the structure of the problem. An example of the application of both reinforce-
ment learning and game theoretic principles for multi agent coordination can be
found in [26].

In direct policy search methods, agents perform stochastic optimization based
on the reward associated with each action [3]. These methods do not require each
agent to maintain a complete state information on other agents, and as such,
are more applicable to our work where we are targeting real-time environments
with limited computational resources. A successful variant of Direct Policy search
methods is the family of algorithms that use the WoLF principle (“Win or Learn
Fast”) [21], which varies an agent’s learning rate based on recent rewards.

Finally, work has been done in learning and adapting motion behavior for
agents in crowded environments [27]. This approach uses inverse reinforcement
learning to enable agents to learn paths from recorded training data (example
traces of virtual characters moving in a simulated crowd). Similarly, the approach
in [28] applies Q-learning to plan paths for agents in crowds, placed on a small
grid. In this approach, agents learn in a series of episodes the best path to their
destination. A SARSA-based [29] learning algorithm has also been used in [30]
for offline learning of behaviors in crowd simulations.

3 Problem Description

The main objective of this work is to introduce online learning techniques in
multi-agent navigation so that the agents can exhibit a more intelligent collision
avoidance behavior. In a typical multi-agent navigation problem, we are given a
virtual environment containing static obstacles and n heterogeneous agents Ai

(1 ≤ i ≤ n) with specified start and goal positions. The task is then to steer
each of these agents to its goal without colliding with the other agents and the
obstacles present in the environment. We also require that the agents navigate
independently without explicitly communicating with each other.

For simplicity, we assume that each agent Ai moves on a plane and is modeled
as a disc with radius ri. At a fixed time instant t, the agent Ai is at position
pi, defined by the (x, y) coordinates of the center of the disc, and moves with
velocity vi that is limited by a maximum speed υmax

i . Furthermore, at every

simulation step, Ai has a preferred velocity vpref
i directed toward the agent’s

goal with a magnitude equal to the speed υprefi at which the agent prefers to
move. We assume that the radii, positions and velocities of other nearby agents
can be obtained by local sensing. Given this formulation, the goal of a local
navigation method is to independently compute for each agent a new velocity
that is close to its preferred one and avoids collisions with obstacles or other
agents. The agent adopts the new velocity for the next simulation cycle and
updates its position accordingly.

In our current framework, we use the RVO2-Library for the local naviga-
tion of the agents. This library uses the Optimal Reciprocal Collision Avoidance
(ORCA) formulation which allows each agent to select a reciprocally collision-
avoiding velocity by solving a low dimensional linear program [1]. ORCA can

Online Learning for Multi-Agent Local Navigation 5

guarantee collision-free motions for the agents as they move towards their goal.
However, like in any local navigation method, the parameters that capture an
agent’s internal state (i.e., the preferred speed υpref , separation distance ρ, etc.)
remain fixed over the entire simulation leading to unrealistic motions. Consider,
for example, the preferred speed υpref of an agent. It is only assigned once, at
the beginning of the simulation, and does not change even when an agent en-
counters challenging and time-consuming situations. Ideally, though, an agent
should be able to adapt its preferred speed based on the situation that it faces,
the behavior of the other agents, the complexity of the environment and so on.
This adaptation could be partially encoded in rules, however, this approach lacks
flexibility and scalability. In contrast we aim for a Reinforcement Learning (RL)
based approach as a natural choice for improving the behavior of the agents by
allowing them to adapt to the scenario at hand.

However, there are certain challenges in the application of RL algorithms to
multi-agent navigation. First, in our problem setting, we are interested in agents
that can learn online, while the simulation is running. Furthermore, even if the
agents are able to learn an optimal strategy in a given environment, this strategy
may not be equally successful in different scenarios and thus, the agents should
be trained again. Also, agents in our problem are staged in a 2D continuous
state space, which prevents simple state-action algorithms from being directly
applied. Although there are approaches that deal with this type of state space by
discretizing it, they involve tradeoffs that do not align with our objective in this
work. Finally, an agent’s strategy for adapting to the environment may depend
on several factors including the full state of all the other agents. However, this
can be computationally expensive and memory intensive. Existing algorithms to
model and track other agents’ actions and states are mainly applicable to small
problems with a very small number of agents [3].

Consequently, given these issues in applying traditional RL and rule-based
approaches, we intend to use an alternative adaptive learning method.In our
approach, agents do not learn a policy for the complete state-action space, and
do not store the values for each instance of this space. Instead, our proposal is to
update an agent’s beliefs across the available actions in the current state using
the recent history of action-reward pairs and feedback from the simulation. This
way, agents learn to adapt ther policies to dynamic environmental conditions
on the fly. We adapt a method inspired by the popular WoLF (“Win or Learn
Fast”) policy hill climbing algorithm (WoLF-PHC) [21] which involves a variable
learning rate for the agent given the feedback it receives after its previous action.
Hence, each agent keeps an updated probability distribution on the actions, and
stochastically picks one based on these probabilities.

In Section 5, we introduce a streamlined adaptive learning method which
works on the reduced state space consisting of an agent’s preferred speed and
the resulting velocity from ORCA. If more computational resources are available
per agent, a more complex learning approach may be preferable. Additionally,
while an agent’s true state space is continuous, we discretize its potential actions

6 Julio Godoy, Ioannis Karamouzas, Stephen J. Guy, and Maria Gini

into a finite number of choices. It may be possible to apply approaches such as
Tile Coding [29] to overcome this limitation.

4 Online Adaptive Framework

In our adaptive framework, at every time step of the simulation, each agent in
the environment stochastically selects and performs an action that changes its
state and provides an appropriate reward. More formally, we define:

Environment A 2D space consisting of agents and static obstacles.

State A specific set of parameter values for the agent. An example state would
consist of the agent’s position, current velocity and preferred velocity.

Actions A discrete set of actions the agent can choose from. In the example
state described above, the agent can either speed up, slow down (by specified
values δinc and δdec respectively), or keep the same preferred speed. See Sect.
5 for more details.

Goal The goal position of the agent.

Reward A numerical value that represents the progress the agent has made
towards its goal.

We refer the reader to Fig. 1 for a schematic overview of our framework.
As can be observed, the agents use feedback received from the environment to
make decisions about actions that influence their behavior (for example, increase
or decrease their preferred speed), with the belief that the chosen action will
improve their collision avoidance strategy and help them achieve their goals as
fast as possible. Hence, the traditional sensing-acting cycle for an agent is defined
as follows:

1. Agent decides on a certain action.

2. Agent performs the action, which changes its state.

3. Agent receives feedback or reward for performing the chosen action.

4. Agent uses the feedback to update its beliefs, which in turn affect its future
decisions.

5. Back to Step 1.

Finally, we should point out that, in our framework, we are not interested
in agents that reach a convergence in their behaviors, as our goal is to make
them adaptable to environmental changes, even if this implies that sometimes
they will choose suboptimal actions. In contrast, we are mainly interested in how
the decisions of the agents at each simulation step affect both their individual
behavior as well as the aggregate behavior of the entire crowd. Do agents account
for congestion when they are more reactive to external conditions? Do they
actually reach their destinations faster?

Online Learning for Multi-Agent Local Navigation 7

Fig. 1: A schematic overview of our framework. A continuous cycle of sensing and
acting is run, allowing the agent to adapt its behavior based on the feedback
received from the environment after performing a certain action.

5 Learning Approach

In this section, we describe a simple learning approach that allows an agent to
adjust the value of its preferred speed in order to reach its destination as quickly
as possible, while adapting to dynamic environmental conditions. Our learning
method works on a reduced state space consisting of the agent’s preferred speed
and the new velocity that ORCA computes for the agent at each time step of
the simulation.

Given this reduced state space, we consider the following actions that the
agent can perform:

Speed Up Increase the preferred speed by δinc.

Slow Down Decrease the preferred speed by δdec.

Keep Speed Maintain current preferred speed.

Stop Stay in the current position for the next step.

Go Back Move in the opposite direction of the goal.

Stochastic action selection

The agent keeps a probability distribution on the available actions and chooses
one based on stochastic policy hill climbing. Initially, because the agent has not

8 Julio Godoy, Ioannis Karamouzas, Stephen J. Guy, and Maria Gini

explored the environment and does not know the consequences of its actions,
every action a has the same probability of being picked, that is:

∀i ∈ I : Pai =
1

|I|
,where I denotes the set of all available actions for the agent.

Feedback and reward

After performing the action, the agent receives as feedback from the ORCA
algorithm a new velocity that needs to take in order to avoid collisions with other
agents and static obstacles present in the environment. The agent’s reward is
computed based on this feedback by projecting the ORCA velocity to the agent’s
normalized preferred speed. This allows us to determine whether and how much
the agent has progressed toward its goal after performing its selected action.

Variable learning rate

To measure how ‘profitable’ was the undertaken action, the agent compares
its reward with the reward that it received at the previous time step. It then
updates its action probability distributions based on the concept of Variable
Learning Rate and the “Win or Learn Fast” (WoLF) principle introduced in
[21] for learning in competitive environments.

In [21], the authors use two learning rates to update an agent’s beliefs based
on the outcome of the last interaction so that the agent can “learn quickly while
loosing and slowly while winning”. Specifically, a WoLF-based agent uses a larger
learning rate to adapt quickly in low reward situations, and a smaller learning
rate to cautiously adapt in high reward situations. Instead, our adaptation em-
ploys a different learning strategy. We aim at using a variable learning rate to
maximize the probability of choosing a profitable action and slowly decrease the
probability of an action that is less beneficial to the agent.

The rationale behind this is that when an agent is slowed down to resolve
collisions, no action will improve its speed and, therefore, its reward in the short
term. We still want, though, the agent to keep a reasonable probability on actions
that have proven to be profitable in the recent past. Hence, we do not want
agents to minimize their chance of speeding up too quickly. On the other hand,
if the environment is highly congested, the gradual decrease on probabilities will
eventually force the agent to stop only when it is very close to the congestion
ahead.

Consequently, our approach defines two learning rates: γmin and γmax which
are used when the agent is decreasing and increasing its rewards, respectively.
Then, if the agent took an action ai at timestep t− 1 which increased its reward
compared to the previous timestep, at t it updates the probability of taking that
action from P t−1

ai
to P t

ai
as follows:

P t
ai

= (P t−1
ai

+ γmax), where (P t−1
ai

+ γmax) < 1 (1)

Online Learning for Multi-Agent Local Navigation 9

P t
aj

=
1− P t

ai

|I − 1|
,∀j ∈ I, j 6= i (2)

If instead, the agent’s reward was decreased, P t
ai

is defined as:

P t
ai

= P t−1
ai
− γmin, where P t−1

ai
− γmin > 0 (3)

P t
aj

= P t−1
aj

+
γmin

I − 1
(4)

In other words, if an agents receives a higher reward by choosing an action,
then in the consequent steps, the probability of chosen that action is very high.
The agent still keeps a small probability for choosing the other actions, which
may be necessary for continuously exploring the dynamic environment prevent-
ing the agent from getting stuck at local optima. On the other hand, if the action
reduces the agent’s reward, then its probability is reduced by γmin in order to
gradually give more weight to other potentially more rewarding actions.

5.1 Implementation Details

We implemented the adaptive learning approach described above using the pa-
rameter values given in Table 1. In our implementation, the agents initially have
to choose between the Speed up, Slow down and Keep Speed actions. Only if an
agent’s preferred speed is reduced to almost zero, the other two actions (i.e.,
Stop and Go Back) become available. Note that in very congested scenarios, an
agent chooses randomly between these two actions as a deterministic choice will
result in all agents having the same policy (either stopping or moving back).

Consequently, in our current implementation, the simulated agents :

– learn to increase their preferred speed when it is profitable for them to do
so,

– learn to keep their current preferred speed when increasing does not payoff,
– learn to take more conservative actions, whether by stopping or taking a step

back, in more congested scenarios when their speed reduces significantly.

Table 1: Default parameter values for each agent.

Description Symbol Value

Agent’s radius r 1.1 m

Maximum speed υmax 2.5 m/s

Initial preferred speed υpref 1.25 or 1.8 m/s

Preferred speed increment δinc 0.2 m/s

Preferred speed decrement δdec 0.05 m/s

Minimum variable learning rate γmin 0.1

Maximum variable learning rate γmax 0.9 − P t−1
ai

10 Julio Godoy, Ioannis Karamouzas, Stephen J. Guy, and Maria Gini

(a) Hallway Scenario (b) Congested Exit Scenario

Fig. 2: Initial Configurations (a) In the hallway scenarios agents must walk
down a hallway to an exit. (b) In the congested exit scenario agents are placed
at an exit near each other and must navigate through a narrow opening.

6 Results and Analysis

We tested our Adaptive learning approach across different scenarios, and com-
pared the results to those obtained using ORCA (which uses constant preferred
speeds). In all of our experiments, we set the initial preferred speeds of the
Adaptive agents to 1.25 m/s. We also capped the agent’s preferred speeds to
a maximum value of 1.8 m/s in order to ensure that the virtual agents prefer
to walk at speeds similar to those seen in normal human motion. In all of our
scenarios, we compare the Adaptive agents to ORCA agents having a preferred
speed of 1.25 m/s and ORCA agents having a preferred speed of 1.8 m/s.

Experimental Setup

For our experiments, we use two different scenarios. The first was the Hallway
scenario shown in Fig. 2a. In this scenario, 16 agents are placed at the end of
a long hallway and must pass through a narrow exit located at the other end
of the hallway to reach their goals. The second was the Congested Exit scenario
depicted in Fig. 2b. In this scenario, 16 agents are placed very close to a narrow
exit of a room and are given a goal outside of this exit. Here, unlike the Hallway
scenario, agents must immediately face congestion. In each scenario, we ran 100
simulations with the Adaptive approach and another 100 with each configuration
of ORCA.

6.1 Hallway Scenario

A series of time lapse images for the Hallway scenario comparing the motion of
agents using our Adaptive method and those using ORCA is shown in Fig. 3.
In this scenario, agents display two types of behavior as compared to ORCA’s

Online Learning for Multi-Agent Local Navigation 11

(a) ORCA

(b) Adaptive

Fig. 3: Simulation of Hallway Scenario (time lapse) Agents are initialized
walking down a hallway. (a) Using ORCA, agents do not attempt to speedup in
the clear sections of the hallway and thus, they arrive later. (b) Using our adap-
tive method, agents respond to the situation by speeding up when the hallway
is clear, and slowing down near the exit to help resolve congestion.

default behavior. First, when given a low initial velocity agents learn to speed up
when there are no other agents in their way. This can been seen by comparing
the first two panes of Fig. 3. At the same timestep, agents using our Adaptive
approach have managed to get to the exit and leave. Secondly, the adaptive
agents react as the congestion starts to form around the exit by slowing down,

12 Julio Godoy, Ioannis Karamouzas, Stephen J. Guy, and Maria Gini

stopping or taking small steps back. This increase their overall speed and rate
of exit.

6.2 Congested Exit Scenario

(a) ORCA

(b) Adaptive

Fig. 4: Simulation of Congested Scenario (time lapse) Agents are initial-
ized in a congested formation around a narrow exit. (a) When using ORCA
agents don’t cooperate and have difficulty resolving congestion. (b) When using
our adaptive method agents respond to the situation by slowing down and give
way to each other increasing the overall flow.

Figure 4 shows a series of time lapse images in the Congested Exit sce-
nario comparing the motion of agents using our Adaptive method to those using
ORCA. In this scenario, the Adaptive agents again show behaviors not seen in
ORCA. Because ORCA agents start already in congestion, they are not able to
go faster by simply increasing their preferred speed (a clear example of the faster-
is-slower phenomena [12]). As a result, they get caught in congestion regardless
of their preferred speeds. In contrast, the Adaptive agents learn that increas-
ing their preferred speeds does not improve their rewards. Instead, by varying
their preferred speeds and being willing to stop or even step back, they are able
to cooperate to reduce the congestion and increase their individual speeds and
overall flow rates. This can be clearly seen in Fig. 4, as more agents exit faster
and with less congestion when using our Adaptive approach than with ORCA.
The ORCA agents are still struggling with congestion (Fig. 4a - last pane) while
the last of the Adaptive agents is about to exit the room (Fig. 4b - last pane).

Online Learning for Multi-Agent Local Navigation 13

0"

10"

20"

30"

40"

50"

60"

Adap-ve" ORCA"(1.8)" ORCA"(1.25)"

Ex
it%
Ti
m
e%
(s
)%

Hallway%Scenario%

(a) Hallway Scenario

0"

10"

20"

30"

40"

50"

60"

70"

Adap.ve" ORCA"(1.8)" ORCA"(1.25)"

Ex
it%
Ti
m
e%
(s
)%

Congested%Exit%Scenario%

(b) Congested Exit Scenario

Fig. 5: Exit Times (smaller is better) for (a) the Hallway Scenario and (b) the
Congested Exit Scenario. The same scenario was simulated using our Adaptive
approach (with a preferred speed capped to a maximum of 1.8 m/s), ORCA with
a constant preferred speed of 1.25 m/s, and ORCA with a constant preferred
speed of 1.8 m/s. Signicant pairwise differences between our approach and the
other models are illustrated by ∗(p < .05). Error bars represent standard error.

6.3 Quantitative Comparisons

Figure 5 shows the exit times for both ORCA and our Adaptive approach in
both of our scenarios. In all cases, our Adaptive approach provided the fastest
exit times. In the Hallway scenario, ORCA agents exited much quicker when
they are given a higher preferred speed (1.8 vs 1.25 m/s). This is because there
is not much contention early on when they are moving down the hallway, and
so moving faster is the correct strategy. In the Congested Exit scenario, the
numerical difference is even larger.

The results demonstrate the ability of agents using our Adaptive approach
to adopt the correct parameter values across varying scenarios. We believe that
these results show that such a learning approach has a good potential in making
agents learn behaviors that increase their own rewards and the reward of the
entire multi-agent system being simulated.

7 Conclusions and Future Work

In this work, we have combined ORCA, a popular method for multi-agent naviga-
tion, with an online learning algorithm. We have demonstrated that the resulting
framework allows agents to learn to adapt in dynamic environments. We built
a simple probabilistic framework where agents modify their behaviors based on
feedback received from the environment, and stochastically select actions accord-
ingly. By using principles from a known policy hill climbing approach (WoLF),
agents are able to select more profitable actions with respect to their preferred
walking speeds. Preliminary experiments show that, by learning to take more
conservative actions in the presence of congestion, and more aggressive ones in

14 Julio Godoy, Ioannis Karamouzas, Stephen J. Guy, and Maria Gini

the absence of it, agents using our proposed approach reach their destinations
faster than those agents simulated using non-adaptive navigation methods.

We believe there are many possibilities for future work. We plan to improve
our learning approach by considering a more complete representation of an
agent’s state space. We would also like to explore different reward functions.
In addition, we plan to conduct a user study to validate the behavior that the
simulated agents exhibit by using our framwork. Finally, we would like to extend
our adaptive navigation approach to more complex scenarios.

References

1. van den Berg, J., Guy, S.J., Lin, M.C., Manocha, D.: Reciprocal n-body collision
avoidance. In: International Symposium of Robotics Research. (2009) 3–19

2. Pelechano, N., Allbeck, J., Badler, N.: Virtual crowds: Methods, simulation, and
control. Synthesis Lectures on Computer Graphics and Animation 3(1) (2008)
1–176

3. Buşoniu, L., Babuška, R., De Schutter, B.: A comprehensive survey of multi-agent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews 38(2) (March 2008) 156–172

4. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Com-
puter Graphics 21(4) (1987) 24–34

5. Reynolds, C.: Steering behaviors for autonomous characters. In: Game Developers
Conference. (1999) 763–782

6. Funge, J., Tu, X., Terzopoulos, D.: Cognitive modeling: knowledge, reasoning
and planning for intelligent characters. In: 26th annual conference on Computer
graphics and interactive techniques. (1999) 29–38

7. Shao, W., Terzopoulos, D.: Autonomous pedestrians. Graphical Models 69(5-6)
(2007) 246–274

8. Pelechano, N., Allbeck, J., Badler, N.: Controlling individual agents in high-density
crowd simulation. In: ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. (2007) 99–108

9. Guy, S., Kim, S., Lin, M., Manocha, D.: Simulating heterogeneous crowd behaviors
using personality trait theory. In: ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. (2011) 43–52

10. Popelová, M., B́ıda, M., Brom, C., Gemrot, J., Tomek, J.: When a couple goes
together: walk along steering. Motion in Games (2011) 278–289

11. Guy, S.J., Chhugani, J., Curtis, S., Pradeep, D., Lin, M., Manocha, D.:
PLEdestrians: A least-effort approach to crowd simulation. In: ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. (2010) 119–128

12. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic.
Nature 407(6803) (2000) 487–490

13. Karamouzas, I., Heil, P., van Beek, P., Overmars, M.: A predictive collision avoid-
ance model for pedestrian simulation. In: Motion in Games. Volume 5884 of LNCS.,
Springer (2009) 41–52

14. Ondřej, J., Pettré, J., Olivier, A.H., Donikian, S.: A synthetic-vision based steering
approach for crowd simulation. ACM Transactions on Graphics 29(4) (2010) 1–9

15. van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-
time multi-agent navigation. In: IEEE International Conference on Robotics and
Automation. (2008) 1928–1935

Online Learning for Multi-Agent Local Navigation 15

16. Pettré, J., Ondrej, J., Olivier, A.H., Crétual, A., Donikian, S.: Experiment-
based modeling, simulation and validation of interactions between virtual walkers.
In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation. (2009)
189–198

17. Karamouzas, I., Overmars, M.: Simulating and evaluating the local behavior
of small pedestrian groups. IEEE Transactions on Visualization and Computer
Graphics 18(3) (2012) 394–406

18. Guy, S., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., Dubey, P.:
Clearpath: highly parallel collision avoidance for multi-agent simulation. In: ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. (2009) 177–187

19. Sutton, R.S.: Learning to predict by the methods of temporal differences. In:
Machine Learning, Kluwer Academic Publishers (1988) 9–44

20. Mataric, M.J.: Reinforcement learning in the multi-robot domain. Autonomous
Robots 4 (1997) 73–83

21. Bowling, M., Veloso, M.: Multiagent learning using a variable learning rate. Arti-
ficial Intelligence 136 (2002) 215–250

22. Zhang, W., Dietterich, T.G.: A reinforcement learning approach to job-shop
scheduling. In: the Fourteenth International Joint Conference on Artificial In-
telligence, Morgan Kaufmann (1995) 1114–1120

23. Singh, S.P., Barto, A.G., Grupen, R., Connolly, C.: Robust reinforcement learning
in motion planning. In: Advances in Neural Information Processing Systems 6,
Morgan Kaufmann (1994) 655–662

24. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8(3-4) (1992) 279–
292

25. Uther, W., Veloso, M.: Adversarial reinforcement learning. Technical report,
Carnegie Mellon University (1997)

26. Kaminka, G.A., Erusalimchik, D., Kraus, S.: Adaptive multi-robot coordination:
A game-theoretic perspective. In: Robotics and Automation (ICRA), 2010 IEEE
International Conference on, IEEE (2010) 328–334

27. Henry, P., Vollmer, C., Ferris, B., Fox, D.: Learning to navigate through crowded
environments. In: IEEE International Conference on Robotics and Automation.
(2010) 981–986

28. Torrey, L.: Crowd simulation via multi-agent reinforcement learning. In: Artificial
Intelligence and Interactive Digital Entertainment. (2010)

29. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
(1998)

30. Martinez-Gil, F., Lozano, M., Fernández, F.: Calibrating a motion model based
on reinforcement learning for pedestrian simulation

