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Abstract

Planning-based techniques are a very powerful tool for
automated story generation. However, as the number
of possible actions increases, traditional planning tech-
niques suffer from a combinatorial explosion due to
large branching factors. In this work, we apply Monte
Carlo Tree Search (MCTS) techniques to generate sto-
ries in domains with large numbers of possible actions
(100+). Our approach employs a Bayesian story evalu-
ation method to guide the planning towards believable
stories that reach a user defined goal. We generate sto-
ries in a novel domain with different type of story goals.
Our approach shows an order of magnitude improve-
ment in performance over traditional search techniques.

Introduction

Within the last decade, there has been a growing interest in
computer generated stories. Such stories are important to
enrich the immersiveness of virtual environments used for
entertainment, training and education. Also, as these auto-
matically generated stories are brought into increasing use
in modern computer games, they must be scaled to handle
large domains with dozens of characters, each with many
different actions across multiple environments.

Generating stories efficiently in large domains is a dif-
ficult problem due to the exponential growth in the search
space. Furthermore, the number of possible actions each
character can take changes as the story progresses and
agents’ states change. Monte Carlo Tree Search (MCTS)
has shown promising results in several domains with large
search spaces. Since it has been proposed, MCTS has been a
game changer for several Al problems [Chaslot et al., 2006].
One of the most notable examples is computer Go, recently
the program FUEGO beat a top human professional at 9x9
Go game [Enzenberger et al., 2010] despite the large search
space inherent in Go. Inspired by this, we seek to apply
MCTS to the story generation domain to generate believable
stories for large scale story domains.

Main Result We propose new algorithms and heuristics
to handle automated story generation by employing Monte
Carlo Tree Search. This approach performs well both in
terms of search time and memory usage. We also introduce
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a story evaluation metric capable of guiding MCTS to gen-
erate believable stories that meet user specified goals. Our
method is flexible as it does not need predefined main char-
acters, instead actions arise emergently as needed to satisfy
the goals in a believable fashion providing more diversity
and flexibility in stories.

Previous Work

In this section we briefly discuss previous work in the area of
automated narrative generation and highlight some related
work which makes use of MCTS.

Automated Narrative Generation

There are many approaches proposed for narrative genera-
tion. We discuss first some character-centric approaches as
they are most closely related to our approach.

Character-centric The work of Theune et al. [2003] on
Virtual Storyteller models autonomous agents and assigns
them roles within the story by an external plot-agent. Actors
plan collaboratively both in-character (traditional AI plan-
ning) and out-of-character. Once a story plan has been gen-
erated, it is passed to the plot-agent which then analyzes the
output and determines the most interesting, believable nar-
rative.

Brenner [2010] demonstrated narrative generation within
the domain of multi-agent planning. Multi-agent planning
is a rich domain which models multi-state variables, agent
knowledge, information exchange between agents, and time.
Brenner shows that by using multi-agent planning stories
can successfully capture character failures. More recently,
the work of Teutenberg et al. [2013] combined intentional
planning with the multi-agent planning of Brenner [2010].
Instead of considering all possible actions from a given
story-world state, agents first filter these actions against a
set of intentions and consider only those actions which align
with said intentions.

The above approaches focus on creating high quality sto-
ries in controlled domains. In contrast, we focus on narrative
planning over large story-worlds with many actors, actions,
items, and places, while augmenting narrative planning to
include believability.

Other Approaches Author-centric methods such as
analogy-based story generation of SAM [Ontanon and Zhu,



2011] and MEXICA [Pérez Y Pérez and Sharples, 2001] at-
tempt to generate stories from the point-of-view of the au-
thor. In the case of SAM, narratives are produced by finding
analogies in a complete input story and an incomplete target
story by use of a predefined knowledge domain.

Lastly, story-centric methods, such as Fabulist [Riedl and
Young, 20101, reason over intentions and corresponding ac-
tions from the point of view of the audience. In doing
S0, story-centric methods generate narratives which more
clearly communicate character motivations to the audience.

Monte Carlo Tree Search

Monte Carlo Tree Search is a powerful method, that has
shown particular success in searching over large domains
by using random sampling approaches. It is an anytime al-
gorithm that converges to optimal solutions given enough
time and memory. Its success has been particularly recog-
nized after its performance in the game Go [Enzenberger
et al., 2010]. MCTS has been further employed in realtime
games [Samothrakis, Robles, and Lucas, 2010] and Soli-
taire puzzles [Cazenave, 2007] where it can outperform hu-
mans. MCTS has also been used for other domains including
optimization [Silver and Veness, 2010] and planning prob-
lems [Chaslot et al., 2008]. For more information, we re-
fer reader to the excellent survey presented in [Browne et
al., 2012]. We employed the MCTS with UCB (Upper Con-
fidence Bounds) following the approach from [Kocsis and
Szepesvari, 2006] which balances exploration vs. exploita-
tion during planning.

MCTS for Story Generation

In this section, we first introduce a new story domain in
which we evaluate our method. We then introduce our be-
lievability metric that guides the MCTS search, and provide
a detailed explanation of our planning method.

Story Domain

Planning based story generation typically works over a user-
specified story domain. We support a custom domain based
on a simplified PDDL-type of environment specification.
While our approach is generic, we demonstrate it using the
following crime-story inspired domain.

Our domain has three types of entities: Actors, Items, and
Places. Actors, which are intended to represent people or
other characters, can pick up or use various [tems, or move to
other places. Each Item allows different actions for an Actor.
Items and Actors can be located at different Places.

Each entity has several attributes which allows the plan-
ner to keep track of what effect various actions have on
the Actors, Items, and Places. For example, actors have a
“health” attribute which is decreased when they are attacked.
Below is an abbreviated list of the various actions allowed in
our story domain.

e Move(A, P) A moves to place P.
e Arrest(A, B) B’s place is set to jail.

e Steal(A, B, I) A takes item I from B. This increase B’s
anger.

e Play Basketball(A, B) A and B play basketball. This
decreases A’s and B’s anger.

e Kill(A, B) B’s health to zero (dead).

e FindClues(A) A searches for clues at its current loca-
tion

e ShareClues(A, B) A shares with B any clues he has
found.

o Earthquake(P) An earthquake strikes at place P. This
causes people at P to die (heath = 0), items to be stuck,
and place P to collapse.

For Actors we have several citizens: Alice, Bob, Charlie,
David, etc. There is also a detective named Sherlock, and a
police officer named Officer McBraddy. For Places there are
several homes, recreation areas (e.g., basketball courts), and
a downtown. [tems include flower vases, basketballs, base-
ball bats, guns and handcuffs. As discussed below, the be-
lievability of an actor taking a certain action will depend on
where they are, what items they have, and their past experi-
ences with other people.

We assume that the user specifies both an initial config-
uration and a goal for the story (e.g., who is in their own
house, who is in downtown, where are the guns and vases).
A common goal might be, “at least two people are dead and
the murderer is arrested”. For the purpose of running exper-
iments, we can make the domain more complex by adding
more citizens, items and places, and by changing the goal.

Believability

Our approach focuses on goal-oriented narrative generation.
However, rather than searching to find any story which sat-
isfies a user’s goal we search for the best-possible story as
evaluated by our metric. For this work, we chose a broad
evaluation criteria based on how believable an action is given
the current state of the story. The believability of each action
is a user-defined measure on a scale from O to 1, which we
treat as a (Bayesian) probability. That is, given the current
state of the world, how likely is it that an event happens con-
ditioned on the current state of the environment. For exam-
ple, character A attacking character B may be more believ-
able if A is angry. Likewise, a character arresting someone
may be more believable if the character is a cop. Some key
examples from our domain are presented below.

e Arrest(A, B) More believable if A is a cop. More be-
lievable if A has clues to a crime.

e Steal(A, B, I) More believable if item I is valuable.

e Kill(A, B) More believable if A is angry. More believ-
able if A has previously killed someone.

¢ FindClues(A, P) More believable if A is a cop or a
detective.

e ShareClues(A, B) More believable if B is a cop.
o Earthquake(P) Very low believability.

For a series of actions, we evaluate the overall believabil-
ity as the product of the believability of each individual ac-
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Approach Overview

Our approach uses the MCTS algorithm to find the chain of
actions which accomplishes the user-defined goals with the
maximum amount of believability. To apply MCTS we must
first define a function which evaluates the extent that a given
story believably reaches the user’s goals. This function will
shape the expansion of the Monte Carlo search tree. As an
evaluation function we use the percentage of goals a story
achieves times it’s believability.

More formally, we represent a given story as a set of ac-
tions A = {ay - - - a,, }. We define a story evaluation function
E as:

E(A) = G(A)B(A) @
where G(A) is the percentage of the user-defined goals the
current story accomplishes, and B(.A) is the believability of
the story as specified in Eqn 1.

The value of E(A) will be maximized when the search
algorithm finds a story which satisfies all the user’s goals in
the most believable way possible. Importantly, this formula-
tion allows for a series of actions that are not very believable
to occur in the story if it is the only way to achieve the user’s
specified goals.

While E(A) provides a natural way to evaluate a com-
pleted story, it is of limited use for partial stories that will
be encountered during a tree search. This is because, until a
story satisfies some of the goals the evaluation will always
be 0. We address this issue by adding a random rollout to
the story, that is a series of random actions that is added to
the partial story until all the goals are met (or until a story
grows past a length threshold). We denote this randomized
extension of A4 as A’:

A" ={a1,az,...an,71,72, .70} 3)

where r; - - - 1, are randomly generated actions. This allows
a probabilistic evaluation of A even when A does no yet
reach the goal. We denote this probabilistic evaluation as F’:

E'(A) = B(A). @

We can now formulate story generation as a Monte Carlo
tree search problem. Each node in the tree will represent the
complete state of the world. Each link in the tree represents
one possible action from that state, and that child of the node
represents the resulting world state after applying that ac-
tion. The root of the tree is the initial state of the world. The
MCTS algorithm proceeds by repeatedly adding one node at
a time to the current tree. For each potential action, we keep
track of how many times we have tried that action, and what
the average evaluation was. Choosing which child node to
expand (i.e., choosing which action to take), becomes an ex-
ploration/exploitation problem. We want to primarily choose
actions that had good scores, but we also need to explore
other possible actions in case the random rollout was “un-
lucky” and does not represent their true potential of that ac-
tion.

The exploration/exploitation dilemma has been well stud-
ied in other areas. Here, we chose to use the Upper Con-
fidence Bounds (UCB) approach proposed by [Auer, Cesa-
Bianchi, and Fischer, 2002]. Applied to our framework, this
means that each node choses its child n with the largest value

of f(n):
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f(n) = E'(An) +
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where A, is the parent’s story so far updated to include ac-

tion n, v is the total number of times this node has been

visited, and n,, is the total number of times that given child

action has been previously tried.

Choosing which node to add is then a recursive process.
For each node, a child action with the largest value of UCB
equation (Eqn 5) is chosen and expanded. When a node with
unexplored child is reached (n,, = 0) a new node is created
for one of the unexplored children. The process then starts
again from the root of the tree, each time adding one new
node. This way, the tree can grow in an uneven manner, bi-
ased towards nodes with high value for E’(.A,,), which are
likely to be good stories. This process is summarized in Al-
gorithm 1, the algorithm takes as input a budget of the max-
imum number of nodes to explore and returns a series of
actions which comprise the story.

Algorithm 1: MCTS Story Generation

Input : budget

Output: best score and best story

while budget > 0 do

Node < ucbSelection(root) ;

result < rolloutStory(node) ;

backpropagate(result) ;

if result > bestScoreSoFar then
updateBestScore();
saveBestStory();

end

end
return Best Story;

Iterative Implementation

Because the MCTS algorithm keeps the entire tree in mem-
ory, in some cases, the approach can run out of memory
(see Figure 5). This is especially true with domains that have
large branching factors (e.g., many people, places, items or
actions). This can be alleviated by pruning sections of the
search tree that are unlikely to be productive. To this end, we
propose an iterative approach which plans a story one action
at a time. This approach first grows the tree for a fixed num-
ber of actions. Then, only the current best action kept, and
its sibling actions’ and their subtrees are pruned. This action
forms the new initial condition and the tree search contin-
ues. Pseudocode for the iterative approach is presented in
Algorithm 2.

Because a fixed number of nodes are added between each
pruning step, the amount of memory used is bounded. We



Algorithm 2: Tterative Story Generator

Input : budget and max_iterations

Output: best score and best story

for ¢ <— 1 to max_iterations do

while budget > 0 do

Node < uctSelection(root);

result <— rolloutStory(node);

backpropagate(result);

if result > bestScoreSoFar then
updateBestScore();
saveBestStory();

end

end
root <— root’s most visited child;
Prune all other subtrees;

end
return Best Story;

should note that this iterative approach is no longer proba-
bilistically complete, as it is possible to prune a promising
branch early on, leading to a local maxima rather than the
global optimum. However, in practice we are still able to
generate high scoring stories while using much less memory
than the non-iterative approach.

Search Heuristics

Monte Carlo Tree Search can be improved by applying
heuristics to help guide the search. We incorporate two do-
main independent heuristics. For both heuristics, we keep a
history table that stores average evaluation results, E’, for
each action (independent of it’s depth in the tree). We ex-
plore two ways of using this history table: selection biasing
and rollout biasing.

Selection Biasing Here we modify Eqn. 5 to incorporate
the average value for the action stored in the history table.
We introduce a parameter o which weighs the history aver-
age value more strongly when very few (less than k) rollouts
have been performed. Formally:

2Inv

Ny

f(n) = aE'(An) + (1 - a)H(n) +

(6)

where H (n) is average value stored in history table and o =
ny/k.

Rollout Biasing In this heuristic we use the history table
to bias the random rollouts in Eqn. 4. Rather than choosing
pure random actions, we preferentially choose actions which
have had a higher evaluation score as stored in the history
table.

Results

We tested our approach on an instance of the crime story
domain described above. We utilized 5 actors (including 1
policeman and 1 detective), 5 places, and 5 items. The story
goal is set as 2 people dead and the murderer arrested. Be-
cause each actor can use multiple items and travel to differ-
ent places the resulting search space was fairly large with

an average of 50 total actions available across all the actors
at any given time (resulting in a search tree with an average
branching factor of 50).

Search Method Comparison

We first compare our method to traditional search algorithms
of Breadth-First Search, Depth-First Search, and Best-First
Search. We chose these search algorithms because, like
MCTS, none of these algorithms requires a search heuris-
tic. Furthermore, Breadth-First Search and Best-First Search
algorithms are guaranteed to find an optimal solution given
sufficient time and memory. Additionally, Best-First Search
and Depth-First Search will explore longer paths earlier
which can potentially find optimal solutions earlier in the
search process. All search algorithms are implemented such
that they maximize score from Eqn 4. Figure 1 shows a com-
parison of the best story found by the different methods both
for small search budgets and large ones (results averaged
over 3 trials).
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Figure 1: Comparison of Search Methods Our proposed
approach using Monte Carlo Tree Search (MCTS) outper-
forms other search techniques such as Breadth-First Search,
Depth-First Search, and Best-First Search. (a) Even for a
small search budget, MCTS outperforms other methods (b)
The gains improve dramatically for larger budgets.

Depth-First search was observed to use very little mem-



ory, however, it failed to find stories which met any goals.
Best-First search suffers from delay caused by trying to ac-
complish the goals through a set of believable actions due to
its high exploratory behavior. As a result, it tends to require
higher budget to eventually find the optimal solution.

While Breadth-First search outperforms the Best-First
search and Depth-First search methods, it is unable to find a
believable means to achieve the goal even with a budget of
several million nodes. In contrast, our MCTS approach out-
performs all the other search techniques for both small and
large budgets, and it is able to find a high score story and
performance difference increases exponentially in favor of
MCTS given more budget.

The difference in stories generated by the various search
approaches is highlighted in the illustrative sample stories
below. These stories are direct outputs from our code. We
note that we automatically combine two consecutive related
actions into a single sentence to improve readability of the
stories.

Figure 2 shows a sample of a high quality story, that has
been generated by our MCTS algorithm. The story achieves
the goals while containing several plausible actions (such as
revenge killing).

Alice picked up a vase from her house. Bob picked up a rifle
Jfrom his house. Bob went to Alice’s house. While there, greed
got the better of him and Bob stole Alice’s vase! This made
Alice furious. Alice pilfered Bob’s vase! This made Bob furi-
ous. Bob slayed Alice with a rifle! Bob fled to downtown. Bob
executed Officer McBrady with a rifle! Charlie took a base-
ball bat from Bob’s house. Sherlock went to Alice’s house.
Sherlock searched Alice’s house and found a clue about the
recent crime. Bob fled to Alice’s house. Sherlock wrestled the
rifle from Bob! This made Bob furious. Sherlock performed
a citizen’s arrest of Bob with his rifle and took Bob to jail.

Figure 2: High Quality Story (Score: 0.68)

Figure 3 shows a story found by Breadth-First search.
While the story is short and accomplishes the goal of two
people being killed, it fails to achieve the more complex goal
of somebody being arrested. Furthermore, the story makes
use of an earthquake to reach its goals, which has a very low
believability score.

Sherlock moved to Alice’s House. An Earthquake occurred
at Alice’s House! Sherlock and Alice both died due to the
earthquake.

Figure 3: Low Scoring Story (Score: 0.016)

Heuristic Comparison

We also experimented to determine the effect of our two pro-
posed heuristics on search performance. Figure 4 summa-
rizes our results (averaged over 3 trials). For low search bud-
gets, the selection biasing heuristic improves performance
over standard MCTS (Fig 4a). However, this heuristic gets
stuck at a local minima and fails to improve the story even
with large search budgets. In contrast, the rollout biasing
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Figure 5: Iterative vs Non-iterative For very large stories
domains, MCTS can run out of memory trying to store the
entire search tree. In the 20-person domain, the non-iterative
approach could only explore trees up to 5 Million nodes be-
fore failing. Our proposed iterative approach uses tree prun-
ing to reduce memory and can explore much large trees (pro-
ducing higher value stories).

heuristic leads to a substantial improvement over standard
MCTS for large search budgets (Fig 4b).

Large Scale Scenarios

While the MCTS approach we described in Algorithm 1
works well, it consumes large amounts of memory. This
large memory usage can restrict its applicability on very
large scenes. To illustrate this limitation, we extend the
crime story domain above to contain 20 actors, 7 places, and
7 items. This increases the branching factor to 150 potential
actions on average.

Figure 5 compares standard MCTS with our iterative
approach described in Algorithm 2. Importantly, the non-
iterative approach fails to complete its execution when the
search budget is larger than 5 million nodes. This failure
happens because the non-iterative approach is using over
100GB of memory for such large search trees. In contrast,
our proposed iterative approach produce better results for
lower budgets, and can run much larger budgets without fail-
ure. In fact, we were able to run with a budget over 50 mil-
lion nodes on the same machine with no memory issues.

Runtime For the 5 actor story domain, our method was able
to find detailed stories in under 5 seconds, and find the op-
timal story in less than 1 minute (using a single core on an
Intel 2.2 GHz laptop processor). For the 20 actors story do-
main, stories took much longer to generate, though a high
quality story could generally be found in under 1 hour with
the iterative approach.

Conclusion

We have presented a framework capable of generating be-
lievable stories satisfying goals provided by a user even in
large domains. By using a Monte Carlo Tree Search ap-
proach, we were able to balance exploiting the most promis-
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Figure 4: Effect of Heuristics (a) For small search budgets (<500K nodes explored) the search heuristics tested had only a
moderate effect on performance. (b) For large search budgets, the advantage of the rollout biasing heuristic can be clearly seen.
Additionally, while the selection bias heuristic helps with small budgets it tends to get stuck in local minima.

ing branches along with exploring other potentially good
choices at each level of the tree. The resulting framework
generated complex, believable stories with only a few sec-
onds of computation time for small domains, and a few min-
utes for larger ones.

Limitations

While our method is capable of exploring large story spaces,
our approach still has some limitations. The tree size be-
ing stored in memory still grows exponentially as the num-
ber of potential actions increases. Therefore, a story involv-
ing 100s of characters is likely to run out of memory on
consumer hardware. We have also focused only on domain-
independent heuristics, usage of domain specific heuristics
can alleviate memory problems and reduce runtime.

Future Work

Beyond addressing the above limitations, we think there are
exciting directions for future work. We would like to explore
other forms of evaluation criteria beyond our believability
metric. For example, a user might want to specify the pacing
of a story to ensure rising actions and a climax. Additionally,
we think our method is well suited for telling stories in an
interactive domain where the goals change dynamically in
response to the recent actions of a user. To this end, relevant
heuristics such as the IFF (Intentional Fast-Forward) heuris-
tic [Ware, 2012] may help further improve search times and
achieve real-time story generation for large worlds. We are
working on our first GUI prototype to enable interactivity
with a user in domains with real time response times.
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