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C-OPT: Coverage-Aware Trajectory Optimization
Under Uncertainty

Bobby Davis, Ioannis Karamouzas, and Stephen J. Guy

Abstract—We introduce a new problem of continuous,
coverage-aware trajectory optimization under localization and
sensing uncertainty. In this problem, the goal is to plan a
path from a start state to a goal state that maximizes the
coverage of a user-specified region while minimizing the control
costs of the robot and the probability of collision with the
environment. We present a principled method for quantifying the
coverage sensing uncertainty of the robot. We use this sensing
uncertainty along with the uncertainty in robot localization
to develop C-OPT, a coverage-optimization algorithm which
optimizes trajectories over belief-space to find locally optimal
coverage paths. We highlight the applicability of our approach
in multiple simulated scenarios inspired by surveillance, UAV
crop analysis, and search-and-rescue tasks. We also present a
case study on a physical, differential-drive robot. We also provide
quantitative and qualitative analysis of the paths generated by
our approach.

Index Terms—Motion and Path Planning; Collision Avoidance;
Reactive and Sensor-Based Planning

I. INTRODUCTION

THE coverage planning problem has been extensively stud-
ied over the past two decades with important applications

in intelligent farming, area surveillance, lawn mowing and
mine sweeping [1]. In this problem, a robot has to observe or
sweep an environment in an autonomous and efficient fashion.
Even for a 2D region, finding an optimal-length solution to
coverage planning is NP-hard in the general case [2]. There-
fore, several heuristics and approximation algorithms have
been proposed. The problem becomes even more challenging
in the real world, since real robots do not have perfect sensors,
and there is always some uncertainty in their positions and
their monitoring. As such, the robots need to account for these
uncertainties in their planning, while also avoiding collisions.

Belief space planning methods are designed to address the
above problems of motion planning under uncertainty in a
principled way [3]. LQG-MP [4] used this approach to evaluate
the quality of trajectories, however, it did not consider the
problem of generating trajectories. Many recent approaches
model the planning under uncertainty problem as a partially-
observable Markov decision process (POMDP), and solve it
using local optimization techniques [3], [5], [6]. In this paper,
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we extend belief space planning to the problem of coverage
planning under uncertainty. In particular, we focus on the
specific problem of planning a locally optimal and collision-
free trajectory between two given viewpoints.

We propose a new algorithm, referred to here as C-OPT, to
address the coverage-aware trajectory optimization problem.
This work makes three main contributions. First, we unify cov-
erage planning, accounting for uncertainty in region sensing,
and probabilistic collision avoidance into a single framework
(Section III). Second, we present an approach for representing
region uncertainty appropriate for our optimization problem
(Section IV). Finally, we experimentally show the applicability
of our approach across multiple scenarios on both real and
simulated robots (Sections V and VI).

II. RELATED WORK

Covering polygonal regions is a well known problem, and
solutions can be efficiently calculated by cell decomposition,
discretization in grids, or by use of boustrophedon paths [7].
More recent approaches have focused on acceleration through
data structures [8], and extensions to nonholonomic robots
using neural networks [9]. Complex domains have also been
studied including coverage plans for 2.5D elevation maps [10],
and 3D domains [11]. Recently, Kartal et al. [12] employed
an MCTS-based approach for patrolling coverage problems in
adversarial settings.

Accounting for positional uncertainty due to noise adds sig-
nificant new challenges for motion planning. Recently, a class
of techniques known as belief-space planning approaches has
made significant progress in this area by explicitly modeling
the dynamics of a robot’s uncertainty about its environment
during planning. Examples include belief trees [13] and belief
roadmaps [14], which provide globally (asymptotically) opti-
mal plans, along with local optimization approaches which are
typically built on linearized, Gaussian approximations [3], [5],
[6].

Recently, there has been work on combining coverage plan-
ning and belief space planning, with the goal of accounting
for sensing uncertainty in the coverage planning. The work
of Hollinger et al. [15] uses Gaussian processes to consider
observation uncertainty in order to plan a sequence of sensing
waypoints. Kim and Eustice consider positional uncertainty
while using active-SLAM techniques to determine when to
backtrack along a boustrophedon path [16]. The approach of
Bretl and Hutchinson [17] provides guaranteed coverage of
a region in a planar workspace assuming bounded worst-case
uncertainty. Most recently, Charrow et al. [18] first uses a next-
best-view approach to determine which part of an area needs
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to be explored next, and then uses a gradient-based method to
locally optimize a collision-free trajectory to get there.
Our work. Similar to the work discussed above, our work
seeks to develop belief-space approaches to coverage plan-
ning. However, our approach is complementary to the above
methods. Whereas previous work has typically considered
global planning of best viewpoints (while assuming direct
paths will be taken between these viewpoints), our work seeks
to optimize the path taken in-between these global waypoints
to maximize the information they can provide to the robot.
Similar to [5], we optimize trajectories over belief-space using
iLQG [19] to find a locally optimal solution, and use the LQG-
MP formulation [4] to account for the collision probability
with the environment. However, our approach extends these
works to the coverage planning domain. To the best of our
knowledge, no previous work has sought to address this issue
of coverage-aware trajectory optimization.

III. C-OPT FRAMEWORK

Our problem is motivated by cases such as UAV surveillance
of a field or campus where a robot knows the general envi-
ronment (e.g., location of buildings and other obstacles), but
would like to record the current conditions on the ground (e.g.,
field health surveillance, or search-and-rescue). Let (xt,Σt)
represent the belief state of a robot at timestep t, where xt is
the robot’s state and Σt is it’s uncertainty. We assume we are
given a robot model, E , that, given a previous belief state and
a control (ut), produces a new belief state:

(xt+1,Σt+1) = E(xt,Σt,ut). (1)

This process can be modeled, for instance, by an extended
Kalman filter (EKF).

To account for region coverage, let pt represent a model
of the robot’s uncertainty about the target region at timestep
t. We assume the robot uses a sensor to obtain information
about the region. We also assume we have a model of the
sensor, g, which, given a current belief state and a current
region uncertainty, produces a new region uncertainty:

pt+1 = g(pt,xt,Σt). (2)

We are tasked with navigating between two user-given
waypoints, denoted by an initial belief state (x0,Σ0) and a
goal state (xG). Our goal, then, is to navigate between these
two waypoints, maximizing coverage of the region, while
minimizing the chance of collision and the control cost. We
write this formally as a constrained optimization problem over
a series of controls (u1 . . .uT−1):

arg min
u1...uT−1

Ctot(x0 . . .xT ,Σ0 . . .ΣT ,p0 . . .pT ,u1 . . .uT−1)

(3)
such that the evolution of the robot state estimate (x,Σ) and
the region uncertainty (p) follow Eqs. 1 and 2, respectively.

This formulation allows us to directly optimize over control
space, in contrast to the existing paradigm, which, generally
first plans a series of states (waypoints) and then finds a
controller to drive safely between those waypoints. Our unified
framework allows us to simultaneously consider the effect a

Algorithm 1: C-OPT
Input: Initial trajectory (u1 . . .uT ), x0, xg

Output: Optimized trajectory (u1 . . .uT )
1 while ∆u > do
2 ∆u1 . . .∆uT = computeOptimalControls()
3 while change in Ctot < 0 do
4 for t ∈ 1 . . . T do
5 ut = ut + εUpdate(ε,∆ut,bt)

6
[ xt+1

Σt+1

]
= EKF (

[ xt

Σt

]
,ut)

7 Update region uncertainty (Eq. 2)
8 end
9 reduce ε //Line scan

10 end
11 end

control sequence has on both collision avoidance and region
coverage.

A. Optimization via iLQG
Given the above problem formulation, we can now introduce

our proposed coverage-optimization for trajectories algorithm
(C-OPT, Alg. 1). Following the approach proposed by van
den Berg et al. [5], we model uncertainty in the state and
observations as Gaussian distributions, and minimize the total
cost function (Eq. 4) using a belief-space variant of iLQG.
Here the positional belief dynamics over time are modeled as
an extended Kalman filter. The iLQG framework allows us to
avoid discretizing the control and state spaces, and allows for
any robot dynamics and observation models.

At a high level, iLQG works by taking an initial trajectory
and minimizing its cost via gradient descent based on the
Hessian of the cost function with respect to controls (line 2).
We use a line search approach to reduce sensitivity to the
learning rate, and to speed up convergence (lines 3 and 9), by
partially updating the controls with a varying learning rate ε
(line 5). As it is a local optimization technique, iLQG depends
on the initial trajectory. Standard global planning techniques,
such as RRT* [20] or SST* [21], are able to find optimal
control paths between waypoints, but don’t consider region
coverage. As such, these approaches may not give a good
initialization (e.g., consider cases where the goal state is the
same as the initial state). Instead, we propose initialization
with simple paths which coarsely cover the region, while
respecting the robot dynamics. The effect of the initial path
on the final trajectory is explored in the accompanying video.

B. Optimization Formulation
To allow our problem to be integrated into the iLQG

framework, we split the cost into an intermediate cost, C′ ,
at each timestep, and a separate cost, C, for the final timestep:

Ctot =
∑
t

C
′
(xt,Σt,ut) + C(xT ,Σt). (4)

We define the cost for each intermediate state as:

C
′
(xt,Σt,pt,ut) = αu‖ut‖2 + αcCC(xt,Σt) + α

′

pCP(pt),
(5)
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Fig. 1: Modeling the viewing uncertainty of a region.
The robot accounts for (a), the visibility, by calculating what
percentage of the region is within its field of view (the
gray shaded region) and not obstructed by obstacles (the red
rectangle). The robot also accounts for (b), the distance from
the center of the region to the robot.

where CC(xt,Σt) is a cost accounting for the risk of collision
given the robot’s belief state, and CP(pt) is a cost accounting
for the uncertainty in the coverage region. Here, αu is the
weight of the control cost, αc is the weight of the collision
cost, and α

′

p is the weight of the uncertainty cost.
The cost function for the final state is of the form:

C(xT ,ΣT ,pT ) = αd‖xT − xg‖2 + αpCP(pT ). (6)

This penalizes distance from the goal state, and the final
uncertainty over the region. Here, αd is the weight of reaching
the goal, and αp is the weight of the final uncertainty cost.
Overall, given Eq. 4, we seek to find the set of controls, ut,
which minimizes the total cost.

IV. APPROXIMATION APPROACH

The above optimization approach requires modeling three
aspects of the robot’s environment, each with an associated
cost: the uncertainty of the coverage region, the chance of a
collision, and the dynamics of the robot.

A. Region Uncertainty

To model the spatially varying nature of a robot’s uncer-
tainty over a region, we discretize the region into k bins
of equal size, where pi denotes the uncertainty of bin i:
pt =

[
p1 . . . pk

]T
. Here pi represents the accuracy of our

sensing estimate (as measured by the estimated variance). We
can then describe the total uncertainty over the region as:

CP(pt) = s
∑
i

pi, (7)

where s is the size of each bin. As k approaches infinity,
the quality of our approximation of the uncertainty increases.
However, as we will discuss in Section VII, a small value of
k is typically sufficient to obtain high-quality paths.

We assume that each observation is independent of each
other to create a simple update rule from a Kalman filter. In
particular, we assume the measurement of each bin i is sensed
as its true value plus some Gaussian noise with variance wi

corresponding to the sensor uncertainty for bin i. Given a
previous estimate of the uncertainty of bin i, pi, and a new

measurement of the same bin with uncertainty variance wi,
we can compute a new lower value of the uncertainty using
the (one dimensional) Kalman filter equation:

pit+1
= pit −

p2
it

pit + wi
(8)

Using this update rule, we can update the uncertainty of all
bins in parallel.

For any given bin i, we are free to model the sensor
uncertainty, wi, as any spatially varying function dependent
on the relative state of the robot to the bin. In all of our
experiments, we assume the accuracy of the sensor falls off
quadratically with the distance to the robot, di. In addition,
we assume that the uncertainty of a bin rises quickly with the
percentage that is obscured from the robot’s view by obstacles
or limited field-of-view (and is infinite for any non-visible bin).
Finally, we also account for a base level of uncertainty always
present due to imperfections in the sensor. Our sensing model
is therefore:

wi =

{
βv(1− vi) + βdd

2
i + βb if vi > 0

∞ otherwise
(9)

where βv and βd are the constants that control the falloff of
the view quality, and βb is the base uncertainty. The visibility
term, vi, measures the percent of bin i that is within the
field of view of the robot, and not obscured by obstacles (see
Fig. 1(a)). The distance, di, is calculated as the Euclidean
distance from the robot to the center of the bin (see Fig. 1(b)).
To simplify the visibility computation, we make a maximum-
likelihood assumption (i.e., assume the agent’s state is the
mean of the estimated distribution) when computing visibility.
Other sensing models can be easily incorporated by simply
replacing Eq. 9.

B. Collision Probability

We can conservatively approximate the probability of col-
liding with an obstacle based on the minimum number of
standard deviations the mean position is away from the closest
obstacle. Following the LQG-MP approach [4], we compute
the distance to collision in a space transformed such that the
covariance matrix is the identity matrix. In this transformed
space, the number of standard deviations is equivalent to the
Euclidean distance. We compute the transformed x distance,
dx, and y distance, dy , separately and the total chance of
collision is conservatively computed as:

CC(xt) = 4 cdf(−dx) cdf(−dy), (10)

where cdf is the Gaussian cumulative distribution function.
For ease of computation, we model the robot by its bounding
disk/sphere. We note that our approach can be extended
directly to arbitrary robot shapes at the cost of additional
computation.

C. Robot Dynamics and Localization

Our approach supports a wide variety of robot control
dynamics, which will in turn affect the computed path. We ex-
press the control dynamics in terms of two multi-dimensional
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variables: xt, the robot’s state at time t, and ut, the controls
applied at time t. Each dynamics model, then, corresponds to
the following equation:

xt+1 = f(xt,ut). (11)

We assume this control equation is differentiable everywhere
for both x and u.

In our experiments below, we employ three different robot
dynamics, including both holonomic and non-holonomic mod-
els of robot motion (see Appendix A for more details):
• 2D Acceleration Control. Here the robot’s state is a 5D

vector (2 position, 2 velocity, and 1 orientation). The
robot moves by accelerating in each direction indepen-
dently. This is a common, simplified model of aerial robot
dynamics.

• 3D Acceleration Control. Here the robot’s state is a 9D
vector (3 position, 3 velocity, and 3 orientation). This is
an extension of the previous dynamics function to 3D.

• Oriented 2D Acceleration. Here the robot’s state is a
4D vector (2 position, 1 velocity, and 1 orientation). The
robot is controlled by a rotational velocity and a linear
acceleration. This model serves as a better representation
for a car-like robot, which does not have omni-directional
acceleration, but rather accelerates in a single direction.
Optionally, we can incorporate the influence of gravity to
better model an aerial robot, such as a quadrotor.

Localization: In all scenarios, we assume a direct observation
of the current position and orientation of the robot. The
observation function is then given by zt =

[
x y θ

]T
+nt.

We also assume a uniform localization uncertainty throughout
space (e.g., as one might expect from GPS localization). Our
method can support different types of localization, and Ap-
pendix B discusses results with more complicated localization
models.

D. Example Optimization via iLQG

An example of iLQG optimization of a trajectory is shown
in Fig. 2. The robot in this scenario uses the 2D acceleration
control. The robot has the same start and goal position, and
has to cover the ground. The initial trajectory is shown on the
left where the robot simply goes out and back. Subsequent
figures shows the path refinement over iLQG iterations. In the
refined path, the robot can be seen to get closer to the ground,
while following a more efficient route, and reaching its goal
position.

(a) Initial Trajectory (b) Intermediate Plan (c) Final Trajectory

Fig. 2: Evolution of initial trajectory over iLQG iterations.
Each iteration reduces the overall cost function (Eq. 4) and
improves the planned path.

(a) t = 2 (b) t = 5 (c) t = 9

Fig. 3: 3D coverage planning with acceleration controls.
Region uncertainty is shown at time t = 2, 5, and 9 seconds.
The black quadrilateral represents the area the robot can see
from its current state. The planned path successfully observes
the entire region.

(a) αp = 5 (b) αp = 20

Fig. 4: Effect of uncertainty cost parameter. An omni-
directional, acceleration controlled robot attempting to sense
the floor. The rectangle is an opaque obstacle. We show the
optimized path for two different weights of the uncertainty cost
(αp). As the uncertainty weight increases, the path becomes
much more aggressive in getting to optimal views.

V. SIMULATIONS AND RESULTS

We implemented C-OPT in C++ and ran several simulated
experiments. In all of our experiments, unless otherwise spec-
ified, we assume the robot senses through a rigidly mounted
camera with a fixed field view of 90◦ and uses the following
values for the cost function: αu = 5, αc = 1000, α

′

p =
10, αd = 10T, αp = 10T, βv = 9.5, βb = 0.5, βd = 10, where
T is the number of timesteps planned over. We also used a
region discretization, k, of 25 bins, and set each bin to an
initial uncertainty value of 1. These values were chosen such as
the iLQG framework could focus on locally optimal solutions
in terms of the coverage of a region, collision-freeness and
reachability to the goal. For videos of these and other results,
please refer to the accompanying video.

A. 3D Coverage Example

In this 3D scenario, the robot must sense a 2D region using
acceleration dynamics. The initial path is a downward facing
circular sweep of the region. Figure 3 shows the robot at three
different points along its final trajectory, along with the region
uncertainty at each of those timesteps. By the end of the path,
the robot has successfully observed the entire region at high
accuracy.

For ease of illustration, all remaining examples will be
performed in 2D.

B. Acceleration Control with an Obstacle

This scenario shows the effect of obstacles in the environ-
ment. We utilize the same 2D acceleration and initial path as in
Fig. 2. The optimized path is shown in Fig. 4 for two different
uncertainty cost parameters. By increasing the uncertainty
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(a) Final Trajectory (b) t = 2 (c) t = 5 (d) t = 9

Fig. 5: A closed window. Red rectangles are opaque obstacles, while the dashed box is a transparent obstacle. (a) Our C-OPT
Path (b)-(d) the evolution of the uncertainty (the filled region) over time. Dashed line shows the initial region uncertainty.

cost, the robot is more willing to execute more aggressive
controls to reach more optimal viewing positions. Of particular
note is that the robot looks under the obstacle from both
sides. This behavior is desired because it greatly reduces the
uncertainty under the obstacle. As this is a local optimization
method, we can only optimize to paths that belong to the same
homotopic class as the initial trajectory. Thus, since our initial
trajectory flies over the obstacle, we cannot obtain a solution
that steers the robot underneath.

C. Oriented Acceleration

In this scenario, we consider a quadrotor-like robot with
the oriented acceleration dynamics function and gravity. We
assume the sensor is a downward facing camera rigidly at-
tached to its frame. As a result of the oriented dynamics, the
robot can only look in the direction opposite that to which
it is accelerating. To illustrate the diversity of scenarios our
approach supports, we place an impassable wall in the robot’s
environment. While the robot cannot fly through this wall,
there is a transparent window through which it can see the
other side. The goal is located in the upper left, and the initial
path flies directly from start to goal.

Despite the challenging nature of this scenario, the robot
is still able to find a path which efficiently reaches the goal,
and provides good coverage of the ground. Fig. 5(a) shows
the planned path, and the intermediate evolution of the region
uncertainty over time is shown in Figs. 5(b)-5(d). As can be
seen, the robot first flies up partway, uses gravity to fall toward
the bottom of the window (in an effort to orient the camera
to see outside the window as much as possible), then flies
upward slightly away from the window, maximizing the view
of the right side of the ground from the rear-facing camera on
its way to the goal.

VI. CASE STUDY: POINT-TO-POINT PATH OPTIMIZATION

In this section, we describe the results of our experiments
using C-OPT to plan a path for a robot moving through
our research lab. For these results, we used a ClearPath
Turtlebot 2, equipped with a Kinect for onboard sensing. As
an experimental set-up, we assumed the current/initial state of
the robot was known (with some uncertainty), and that we had
a goal/next state which we assume to be known in advance
(e.g., provided by a next-best-view planner). Here, the initial

Start

Goal

Fig. 6: Point-To-Point Optimization. The dashed line shows
the collision-free trajectory, while the solid line shows our C-
OPT trajectory. The red rectangles are the obstacles (desks in
the lab). Planning with our approach provides good views of
the entire target wall.

    2s                                             5s                                           10s 

(a) Collision-free Planning (iLQG)

    2s                                             5s                                           10s 

(b) Coverage Optimized Trajectory (C-OPT)

Fig. 7: Implementation on a robot. First-person view from
the onboard camera of the robot as it executed both the
collision-free plan and the C-OPT trajectories. In the 5s image,
the coverage-optimized trajectory is able to see the wall on the
right side of the desk.

state was on one side of the lab, and the final state on the
other. In the process of navigation, the robot must reach its
goal state, and avoid collisions with the desks while sensing
the desired lab wall (See Fig. 6).

During execution we compared the result from two planning
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Scenario # Obstacles Belief state size # iLQG iterations Time per iteration (ms) Total time (s)
2D Acceleration – Fig. 2 0 45 23 616.6 14.181
2D Acceleration – Fig. 4 1 45 21 617.4 12.966

2D Window – Fig. 5 3 45 21 761.7 15.996
2D Lab Demo – Fig. 6 4 34 18 1013 18.2328
3D Coverage – Fig. 3 0 79 36 1803 64.907

TABLE I: Runtime results for each scenario. Runtimes are averaged over 5 runs.

Fig. 8: Optimized path quality comparison. The red line
shows the average region uncertainty over the collision-free
planning path. The blue shows the results using C-OPT.
Shaded regions denote the respective 95% confidence inter-
vals. The C-OPT trajectory enables the robot to see much more
of the lab’s wall, resulting in significantly less uncertainty.

approaches to guide the robot navigation: one using standard
belief-space iLQG (as proposed in [5], hereafter referred
to as collision-free planner), and one based on our C-OPT
proposed approach. Both approaches shared the same start
and goal states, and were initialized with a trajectory from
an uncertainty-aware RRT (following an approach inspired by
[22]). In the C-OPT run, the robot additionally attempted to
generate good views of the lab’s wall while navigating to the
next state.

One potential issue with C-OPT is that because it is a local
optimization method, the final path is sensitive to the path it
was initialized with. One measure we took to alleviate this
issue was to plan a path as if all obstacles were translucent.
This allows the robot to consider a wider variety of paths
during trajectory optimization and “punch through” some local
minima. A final optimization can be applied where obstacles
are properly treated as opaque to further refine the final path.

In our experiments, both the collision-free planner and C-
OPT were able to successfully reach their goal states without
any collisions (despite the presence of noise in execution).
However, when using our C-OPT approach, the robot was
able to see much more of the target wall while still reaching its
goal. Figure 7 shows a comparison between the two executions
from the robot’s point of view. When using the collision-free
planner, the robot goes slowly, straight to the goal, diverting
only to avoid collision with the upcoming desk. With our
approach, the robot initially moves much more quickly as not
much of the wall can be seen (Fig. 7 - 2s), then turns to the
right to see the right corner of the room (Fig 7 - 5s), and
finally approaches the goal position. As it reaches the goal,
the robot stays slightly closer to the wall in order to reduce

sensor uncertainty (Fig. 7 - 10s).
The effect of this trajectory optimization on reducing the

uncertainty in the knowledge of the wall can be seen in Fig. 8.
Not only is the average uncertainty of all bins along the
wall reduced in half, but so is the spread in uncertainties (as
measured by the 95% confidence interval).

VII. DISCUSSION

A. Performance and Runtime Complexity
The performance of our approach was evaluated on a

3.4GHz Intelr CoreTM i5 PC using 4 cores. Runtime results
for each scenario are shown in Table I. All of the 2D scenarios
share the same state space, and therefore have the same
45 dimensional belief state. The 3D scenario has a larger,
79 dimensional belief state space to accommodate the extra
degrees of freedom in translation and rotation. We note that
planning took less than 20s for most scenarios, which is
fast enough to be used in a real-time planning framework
(assuming the next goal was further than 20s away, and the
planner was coupled with a reactive method for dynamic
obstacle avoidance).

With an n dimensional robot state, the asymptotic runtime
of iLQG is O(n6) [5]. This runtime comes from the most
expensive operation, which involves multiplying two matrices
of dimension belief state size O(n2) by belief state size. In
our case, the ground state (of discretization k) is not part of
the robot state. As such, our belief state is of size O(k+n2),
leading to a runtime of O((k + n2)3). Typically values for n
are small and are fixed for a given robot description. While the
runtime increases cubically with k, a fine discretization is not
always needed to produce good coverage paths. In many of our
experiments, paths generated with 30 bins were within 1% of
the coverage quality as paths with 200 bins (see Appendix C).

If we include the number of obstacle vertices, v, as a free
variable, we also need to include the time taken to compute
the Hessian of the cost function. As we do this operation
numerically, we need to evaluate the cost function (k + n2)2

times. Computing the obstacle cost (Eq. 10) takes O(v) time
in 2D and 3D, as we assume a disk model for the robot. The
control cost (Eq. 5) can be computed in time linear in the
control dimension, and the uncertainty cost (Eq. 7) can be
computed in O(k) time. In 2D, computing the visibility of a
bin (Eq. 9) takes O(v) time. However, the computation is more
expensive in 3D. Assuming convex obstacles, this operation
can be done in O(mv2 log v) time, where m is the number of
obstacles, by first projecting the obstacles to the surface, and
then computing the union of those polygons [23].

B. Convergence Analysis
C-OPT is a local optimization approach, and hence the final

trajectory is influenced by the initial trajectory. However, C-
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OPT is invariant to initial trajectories that belong to the same
homotopy class, and all trajectories in each homotopy will lead
to the same solution (see accompanying video).

We also analyzed the sensitivity of the total cost to the
number of iLQG iterations. In all of our experiments, the cost
quickly decreases over the first few iterations, and then slowly
converges to a locally optimal value (See Appendix D for more
details). This could allow for an easy integration of C-OPT into
an anytime algorithm, as a valid trajectory quickly becomes
available.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new approach to coverage
planning under uncertainty using trajectory optimization. We
adopted methods from belief-space planning to create an al-
gorithm, C-OPT, capable of finding a locally optimal solution
for this new problem. Our approach develops a principled
way of accounting for the sensing uncertainty of a given
region as the robot travels along a path while accounting
for positional uncertainty. We experimentally validated our
approach via simulations in different scenarios with different
robot dynamics models, and showed results on a physical
robot. In all our scenarios, our algorithm provided increased
coverage of the target region, while maintaining efficient,
collision-free paths.
Limitations: The assumptions outlined in Section 3 lead
to some important limitations in how our approach can be
generally applied in practical settings. Firstly, because we
assume the robot knows the location of obstacles, our method
cannot be directly applied to exploration tasks in unseen
environments. We note though, that this limitation can be
partially overcome by exploiting the concept of frontiers [18]
and treating these exploration frontiers as part of the coverage
target. Additionally, our implementation can be too slow for
realtime planning when considering large environments with
many obstacles or fine discretization of the coverage region.
Lastly, the path is only locally optimal, and must be integrated
with a global path planning approach.

These above limitations suggest many promising avenues
for future work. Some aspects of the computation may be
well suited for parallelized acceleration using GPUs to enable
real-time planning. Planning in complex scenes with many
obstacles can also be sped up with recent techniques for fast
geometric processing and distance queries [24], [25]. Finally,
we would like to address the potential to get stuck in poor local
minima. While approaches such as the translucent obstacle
heuristic (we used in Section VI) or planning repeatedly with
many different initial paths can reduce the effect of this issue,
we hope to develop methods which can produce trajectories
which are true global minima.
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APPENDIX

A. Robot Dynamics Models

We list below the different robot dynamics models we
considered in our various experiments.

1) 2D Acceleration
This model was used in Sections IV-D, V-B, and Ap-
pendix B.

xt =
[
x y θ vx vy

]T
ut =

[
ax ay ω

]T

f(xt,ut) =


x+ vx∆t+ 1

2ax∆t2

y + vy∆t+ 1
2ay∆t2

θ + ω∆t

vx + ax∆t

vy + ay∆t


(12)

2) 3D Acceleration
This model was used in Section V-A. This is an exten-
sion of the above 2D Acceleration model to 3D.

3) Oriented Acceleration
This model was used in Section VI.

xt =
[
x y θ vx vy

]T
ut =

[
τ ω

]T

f(xt,ut) =


x+ vx∆t− 1

2 cos(θ)τ∆t2

y + vy∆t+ 1
2 (sin(θ)τ)∆t2

θ + ω∆t

vx − cos(θ)τ∆t

vy + (sin(θ)τ)∆t


(13)

4) Oriented Acceleration with Gravity
This model was used in Section V-C.

xt =
[
x y θ vx vy

]T
ut =

[
τ ω

]T

f(xt,ut) =


x+ vx∆t− 1

2 cos(θ)τ∆t2

y + vy∆t+ 1
2 (sin(θ)τ + gz)∆t2

θ + ω∆t

vx − cos(θ)τ∆t

vy + (sin(θ)τ + gz)∆t


(14)

B. Localization Models

In some scenarios, if GPS is not available, localization can
be provided via beacons. However, it may be infeasible to
distribute these beacons around the environment. We consider
the case where we only have one localization beacon at
the initial position of the robot, and the accuracy of the
beacon decays as the robot moves further away. We use the
same 2D acceleration dynamics and the obstacle environment
shown in Fig. 4 to highlight the difference between the
original optimized path, and the path optimized with spatially-
varying uncertainty. We assume a quadratic decay of the signal
strength, so our localization is worse the farther away we are.
Results are shown in Fig. 9. Comparing to Fig. 4(b), we can
see that the distance from the obstacle is significantly greater

on the right side of the obstacle, and even greater on the return
trip past the right side. This reflects the greater uncertainty the
robot has on the right side of the obstacle.

Fig. 9: Planning with spatially varying uncertainty. A
localization beacon is placed at the starting position on the
left. Positional sensing quality decays the further the robot is
from the beacon. The robot plans a path that stays further from
the obstacle when it is less certain about its position.

C. Effect of Ground Discretization
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Fig. 10: Coverage quality for various discretizations. The
lines show the effect of increasing the region discretization
on the average uncertainty of the optimized trajectory. The
region uncertainty for each discretization is compared to the
uncertainty obtained planning a path where the region is
discretized into 200 bins. As k increases, the coverage quality
of the path converges.

D. Cost over optimization iterations

0.0 0.2 0.4 0.6 0.8 1.0
Normalized iLQG iteration count

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d
 C

o
st 2D With Obstacles

2D Window

2D Lab Demo

Fig. 11: Cost over iLQG iterations. The cost over iterations
for each of the scenarios is shown. Costs quickly decrease at
first, and then converge to a locally optimal value. The costs
for each scenario are normalized based on the cost of the
initial trajectory. The iLQG iterations for each scenario are
normalized based on the total number of iterations it took to
run each scenario.


