
GIGL: A Domain Specific Language for Procedural Content Generation with
Grammatical Representations

Tiannan Chen, Stephen J. Guy
Department of Computer Science & Engineering, University of Minnesota

chen2814@umn.edu, sjguy@umn.edu

Abstract

We introduce a domain specific language for procedural con-
tent generation (PCG) called Grammatical Item Generation
Language (GIGL). GIGL supports a compact representation
of PCG with stochastic grammars where generated objects
maintain grammatical structures. Advanced features in GIGL
allow flexible customizations of the stochastic generation
process. GIGL is designed and implemented to have direct
interface with C++, in order to be capable of integration into
production games. We showcase the expressiveness and flex-
ibility of GIGL on several representative problem domains in
grammatical PCG, and show that the GIGL-based implemen-
tations run as fast as comparable C++ implementation and
with less code.

Introduction
Procedural content generation (PCG), algorithmic creation
of content with limited or indirect user input (Togelius et
al. 2011), has been adopted in commercial games such as
Diablo III (Blizzard) and Path of Exile (Grinding Gear
Games), and studied in many academic contexts includ-
ing plants (Smith 1984), and furniture layouts (Germer and
Schwarz 2009). It is also found in domains outside of enter-
tainment, such as automatically generating code as test cases
for software verification (Claessen and Hughes 2011) or ran-
domly generating math quizzes (Tomás and Leal 2013). In
general, PCG is essential when large amount of diverse con-
tent is needed, such as in creating large virtual world (Smelik
et al. 2011), and creating scenes to test multi-agent simula-
tions (Arnold and Alexander 2013).

Many interesting PCG problems are inherently hierarchi-
cal. These hierarchies can be formalized as grammars, which
provide a natural way of expressing the relationship between
various components. Examples include the self-similarity
seen in plants, component-wise relationships that make up
special items in games, or spatial relationships seen in level
designs (Shaker, Togelius, and Nelson 2016). By incorpo-
rating grammars into the creation of these objects at the
code level, we can achieve a compact representation of many
complex objects, and can re-use the structures to improve
computational efficiency (e.g. as spatial-data structures).

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

...
wrapper:

string name;
int dmg; int basedmg;
int hp; int basehp;

...
node:

string CreateName();
void OnAttack();

...
nonterminal:

Monster; Special;
...
rule:

Monster :=
| normMonster: {...}
| specMonster: Special* spec {...}

Special :=
| frenzySpec: int val {...}
| lifestealSpec: {...}

...

Monster: specMonster

spec
CreateName OnAttack

basedmg basehp
dmg hp

3 8
7 8

Special: frenzySpec

2val
CreateName OnAttack

CreateName

OnAttack

root

name Frenzic Demon

Monster:
• A normal monster has no special effect.
• A special monster has a special effect.

Special Effects:
• Frenzy effect increases damage by some

amount whenever attacking.
• Lifesteal effect increases hp by the

damage value whenever attacking.
…
Variables:
• name
• damage, base damage
• health, base health
…
Functions:
• CreateName creates the name.
• OnAttack updates monster statuses (e.g.

dmg, hp) when monster is attacking.
(Both functions above may depends on the
special effect if any)
…

(a) Design Idea (b) GIGL Code

(c) C++ Object(s)

Figure 1: (a) The design idea for generating random mon-
sters in an RPG game; (b) Key parts of the GIGL code; (c)
Example C++ object(s) generated, with the state shown as
after name being created and having attacked twice (func-
tion contents omitted). Color scheme: blue indicates rules to
expand a nonterminal; red indicates nonterminals (pointers);
green indicates terminals; purple indicates attributes, which
can be variables or functions.

While grammars are useful in PCG, the difficulty of im-
plementing grammars can be an obstacle to their adoption.
On one hand, general purpose languages used in most game
programming (e.g. C++) typically do not have direct support
for grammars, requiring users to implement their own type
systems, hierarchical structures, grammar parametrization,
constraint mechanisms, etc. On the other hand, existing do-
main specific languages (DSLs) for grammatical PCGs are
typically more narrowly targeted than general purpose lan-
guages, without support for compilation to executables, in-
tegration with existing code bases, and high-speed runtime
performance, all of which are frequently needed by mod-

ern games. Our goal, then, is to close the gap between the
ease of designing a grammatical PCG and the issues in im-
plementing it. For this purpose, we introduce a DSL called
Grammatical Item Generation Language (GIGL). As shown
in Fig. 1, GIGL expresses the design idea of a PCG problem
in a natural way (Fig. 1a & 1b), and can be compiled di-
rectly into C++ objects (Fig. 1c) while still maintaining the
grammatical structures.

Our work here presents three main contributions:

• Grammatical Item Generation Language (GIGL): We de-
sign GIGL, a compilable DSL efficiently creating gram-
matical PCG that can directly interface with C++ code.

• Customizable Item Generators: GIGL is based on a PCG
formalism we refer to as item grammars, on top of which
we provide support on flexible control over the stochastic
generation of the procedural content.

• High-Performance PCG: GIGL is implemented to have
high runtime performance (close to C++). In addition, the
grammatical structures stored in the generated C++ ob-
jects can be exploited for further optimization.

It is important to note that throughout the text we use the
word item to broadly mean any procedurally generated con-
tent, such as monsters, puzzles, mazes, plants, dungeons, etc.

Background and Related Work
Our work relates both to the use of grammars in PCG and
DSL for games. We briefly survey both areas below.

Grammatical PCG
Grammar-based PCG approaches have been widely used in a
variety of settings. Grammars have been used for procedural
level design by formulating player action rhythms as rules
(Smith et al. 2009), as representations in evolving Mario
levels (Shaker et al. 2012), for generating environments for
an endless-run type game (Toto and Vessio 2014), and for
generating instances for MMORPG games (Merrick et al.
2013). Grammars have also been used in procedural model-
ing of 3D scenes (Krecklau and Kobbelt 2012), cities (Parish
and Müller 2001; Talton et al. 2011), villages (Emilien et al.
2012), and complex buildings and landscapes (Merrell and
Manocha 2008). Grammatical generation is also used with
natural languages to procedurally generate sentences (Kem-
pen and Hoenkamp 1987) and dialogs (Ryan, Mateas, and
Wardrip-Fruin 2016).

These works typically use specific grammars designed
for the corresponding problems. A more generalized study
on grammatical generation was carried out with the cellular
programming model (McCormack 2005). Our work is in-
spired by the need from these and other works for a conve-
nient and generalized tool for encoding grammatical PCGs,
and therefore can potentially ease their implementation.

DSL for Games
Most commercial video games are built with game en-
gines, which are not typically considered as DSLs them-
selves, but often contain scripting components that use pro-
gramming languages, such as C++ for Unreal Engine (Epic

Games (1998)) and C# for Unity Engine (Unity Technolo-
gies (2004)). DSLs extending from or interfacing with these
languages are readily incorporated into game production.

The academic study of DSLs in game related context is
common. Cutler et al. proposed a DSL for authoring solid
model (2002). Script Cards is a visual programming lan-
guage for enabling young people to create games and sim-
ulations (Howland, Good, and Robertson 2006). Tang et
al. proposed a domain specific modeling language for se-
rious games design modeling (2008). Eberos GML2D (Her-
nandez and Ortega 2010) was developed as a graphic DSL
for modeling 2D video games using the Unreal Engine.
Marques et al. built a DSL for RPG games that supports
model-driven development (2012). Video Game Descrip-
tion Language (Schaul 2013) is a DSL for 2D tile-based
games. Hastjarjanto et al. developed a declarative DSL em-
bedded in Haskell for describing AI in video games (2013).
HyPED (Osborn, Lambrigger, and Mateas 2017) studies
modeling action games using a formal language. Mara-
hel (Khalifa and Togelius 2017) was introduced as a DSL
that directly supports common PCG tasks needed in 2D tile-
based games.

Our work shares a close relationship with all the above
DSL study, though with the unique goal of providing a
DSL for generalized grammar-based PCG tasks. Two very
closely related projects that share our same goal are Trac-
ery (Compton, Filstrup, and Mateas 2014), a language
to support grammar-based procedural story authoring, and
Ceptre (Martens 2015), a language for encoding rules for
interactive narratives and strategy games. Our work is dif-
ferent from both primarily in that GIGL supports direct user
control of the stochastic components of grammars. In addi-
tion, GIGL code can be incorporated into existing C++ code
at compile time, generating in-memory objects that have di-
rect interface with a general purpose language.

Item Grammars and Item Trees
We refer to our proposed formalization of grammatical con-
tent generation as item grammars. Item grammars encode
relationship between aspects of an object (e.g., parts of an
item) through a set of rules that relate nonterminals (which
represent high-level parts), to other nonterminals and termi-
nals (which represent concrete details). The content gener-
ation process starts from a nonterminal and recursively ex-
pands it into a set of nonterminals or terminals by stochasti-
cally selecting applicable rules, until all branches reach ter-
minals. This model is similar to probabilistic context-free
grammars (PCFGs), but with the additional power of sup-
porting context sensitive probabilities.

Figure 2: A simple item grammar for generating dungeon
monsters (left) and the item tree for an example monster
generated by the grammar (right).

Figure 3: An item grammar for generating arithmetic
quizzes (left) and the item tree for an example quiz gener-
ated by the grammar when d = 2 (right), which corresponds
to 3× (2 + 5).

An item grammar encodes possible hierarchical structures
within items. In addition, we use the term item tree to refer to
the structure in an instance of generated item, which is anal-
ogous to a syntax tree for a CFG. Figure 2 shows an exam-
ple item grammar for monsters in dungeon games (a simpler
variants of Fig. 1) and one possible item tree. This gram-
mar encodes monsters who may or may not have a weapon,
which may be a club or flail weapon. Which type of monster
is generated is determined by the expansion of a Monster
(a nonterminal type) node, which can choose either weak-
Monster or strongMonster (two rules). The probability for
each type being chosen is also provided in the specification
of the rules. Here, applying the rule strongMonster further
requires the expansion of its child, a Weapon nonterminal
node, which uses information on the expansion rules for the
Weapon nonterminal type in a similar fashion.

GIGL allows rule probabilities to depend on the context,
which is important for customized control in PCG. For ex-
ample, the item grammar in Fig. 3 generates math quizzes of
integer additions and multiplications for elementary school
students. To prevent the Expr nonterminals from expanding
indefinitely we limit the size of the generated quizzes by ad-
justing the rule probabilities based on the current depth d
(e.g. the probability to choose intExpr is 1.0 when the depth
reaches d and 0.2 otherwise).

GIGL Framework
We propose Grammatical Item Generation Language
(GIGL) as a DSL to encode item grammars and thus gram-
matical PCG. GIGL extends from C++ syntax, has direct
interface with C++ and is implemented with C++ as an in-
termediate language. A detailed documentation of GIGL in-
cluding a formal definition of its syntax can be found at
https://z.umn.edu/gigl.

GIGL encodes grammatical PCG through two main as-
pects: an item type definition, which defines a data type
for the (grammatical) item along with its generator, and
the generator configuration, which allows customization of
item generators. We show the general framework of GIGL
through the Monster example, based on the item grammar
described in the previous section (Fig. 2). A complete im-
plementation of the Monster example (in GIGL), and its ex-
ecution, is shown in Fig. 4.

Item Type Definition
An item type encodes a parametrized item grammar along
with relevant item generator details (Line 3 - 23 in Fig. 4).
Different types of blocks within the item type definition take

different roles in this task. The node blocks declare the at-
tributes on the nodes (e.g., a weapon’s damage amount),
nonterminal blocks declare the nonterminal types, and the
rule blocks declare the rules and how attributes are com-
puted when expanding through these rules (e.g., randomly
setting the damage amount based on the weapon type).

Generator Configuration
The generator configuration allows the specification of the
parameters of item grammars and the associated item gen-
eration processes. Line 27 - 29 and Line 34 - 36 show two
different examples of generator configurations representing
different monster difficulties via different rule probability
settings. The code starting with “<*” and ending with “*>”
is an expression that specifies a particular configuration, and
“generate ... with ...” generates an item instance following
the configuration, returning a C++ object of the specified
item type. The GIGL code for the Monster example already
shows the flexibility (easily tunable probabilities) and modu-
larity (multiple instances of configuration without rewriting
the type definition) provided by this system.

C++ Integration
GIGL’s ability to integrate with C++ is designed on the code
level, by having item generators generating C++ objects. We
choose the approach of creating a DSL to integrate with an
existing language instead of creating a library, because a lan-
guage enables a more natural expression of design ideas in
PCG, compared to passing in options, parameters, function
pointers etc. as arguments to library functions. The top-right
section of Fig. 4 shows C++ source code that directly inter-
faces with the GIGL code on the left. Two lists of monsters
are generated with different configurations (corresponding
to difficulties) and queried for their damage attributes, and
then deleted. The generated monsters are used as C++ ob-
jects. The attributes can be queried (and potentially be mod-
ified) and the objects can be deleted with their pointers, in
the same way as in C++ (highlighted in red).

GIGL Implementation
GIGL is implemented by using C++ as an intermediate
language. We choose C++ as it provides a friendly and
encapsulated interface and produces runtime efficient exe-
cutables. GIGL is translated into C++ then compiled with
C++ compilers. The GIGL-C++ translator is coded in Sil-
ver (Van Wyk et al. 2010), a domain specific programming
language for creating new programming languages, and with
AbleC (Kaminski et al. 2017), a Silver implementation of C
for supporting the non-GIGL-specific part of the language
(i.e. C/C++). The intermediate C++ layer ensures the code
level integration of GIGL with C++.

Controlling Probabilistic Expansions
The Monster example demonstrates the ability to control the
item generation process by configuring probabilities for var-
ious rule expansions. For more interesting and practical con-
tent generation, it is often necessary for designers to spec-
ify more advanced control on the probabilistic expansions.

 1 giglstart;
 2
 3 gigltype DungeonMonster: {
 4 node:
 5 int damage;
 6
 7 nonterminal:
 8 Monster;
 9 Weapon;
10
11 rule:
12 Monster :=
13 | weakMonster:
14 { damage = GetRandInt(2, 5); }
15 | strongMonster: Weapon* weapon
16 { damage = GetRandInt(6, 9) + weapon->damage; }
17
18 Weapon :=
19 | clubWeapon:
20 { damage = GetRandInt(1, 3); }
21 | flailWeapon:
22 { damage = GetRandInt(11, 19); }
23 };
24
25 void GenerateEasyRoomMonsters(DungeonMonster** list) {
26 for(int i = 0; i < 10; i++)
27 list[i] = generate DungeonMonster with <* DungeonMonster:
28 Monster := weakMonster @ {0.8} | strongMonster @ {0.2},
29 Weapon := clubWeapon @ {1.0} *>;
30 }
31
32 void GenerateHardRoomMonsters(DungeonMonster** list) {
33 for(int i = 0; i < 10; i++)
34 list[i] = generate DungeonMonster with <* DungeonMonster:
35 Monster := weakMonster @ {0.6} | strongMonster @ {0.4},
36 Weapon := clubWeapon @ {0.7} | flailWeapon @ {0.3} *>;
37 }

int seed;
DungeonMonster* monster_set[10];

cout << "input seed: ";
cin >> seed;
RandInit(seed);
cout << "Monster stats in Easy Room #"
 << seed << endl;
GenerateEasyRoomMonsters(monster_set);
for (int j = 0; j < 10; j++) {
 cout << monster_set[j]->damage << “ ";
 delete monster_set[j];
}
cout << endl << endl;

cout << "input seed: ";
cin >> seed;
RandInit(seed);
cout << "Monster stats in Hard Room #“
 << seed << endl;
GenerateHardRoomMonsters(monster_set);
for (int j = 0; j < 10; j++) {
 cout << monster_set[j]->damage << “ ";
 delete monster_set[j];
}
cout << endl << endl;

input seed: 2
Monster stats in Easy Room #2
12 3 5 4 5 9 11 3 3 4

input seed: 2
Monster stats in Hard Room #2
28 3 5 4 24 2 11 3 3 8

Figure 4: The usage of GIGL in the Monster example. Left: the GIGL code (non-C++ reserved words marked in blue). Top-
right: the C++ code that interfaces with GIGL (interactions marked in red). Bottom-right: an example input-output sequence.

GIGL allows those fine-grain levels of control, e.g., by al-
lowing rule probabilities to be set through lambda expres-
sions. We showcase this through an L-system tree generator
problem (called the Tree example).

The L-system Tree Generator
L-systems are fractal systems constructed by grammars
and are well-suited in generating plants (Lindenmayer
1968). Here we use an L-system with the grammar F →
F [−F][+F]F (Fig. 6a - 6c) to generate trees. The grammar
describes a sequential drawing motion, where−means turn-
ing right, + means turning left; brackets indicate preserving
the last starting position. We translate the L-system grammar
above into the following item grammar (concrete probability
values omitted as GIGL parametrizes rule probabilities):

TreePart :=

|ntTree(TreePart, T reePart, T reePart, T reePart)

|termTree(TreeSegment) (forced when depth ≥ n)

where the nonterminal type TreePart corresponds to the F in
the L-system grammar and we added a second rule termTree,
so that the expansion may terminate into concrete tree seg-
ments (the terminal type TreeSegment) at a certain depth.

Examples from the GIGL implementation for the Tree ex-
ample is shown in Fig. 5. The Draw on Line 5 is a function
that operates recursively over the grammatical structure for
rendering the tree. To determine the depth of a node, we ex-

 1 ...
 2 gigltype LTree{...}: {
 3 ...
 4 node:
 5 void Draw();
 6 ...
 7 nonterminal:
 8 TreePart(int depth, ...);
 9
10 rule:
11 TreePart :=
12 | ntTree{double branch_deg}:
13 TreePart* bottom, TreePart* right,
14 TreePart* left, TreePart* top
15 {
16 generator {
17 bottom = generate TreePart(depth + 1, ...);
18 right = generate TreePart(depth + 1, ...);
19 left = generate TreePart(depth + 1, ...);
20 top = generate TreePart(depth + 1, ...);
21 ...
22 }
23 Draw {...}
24 }
25 | termTree: TreeSegment* seg { ... }
26 };
27
28 LTree* GenerateLTree(...) {
29 return generate LTree with <* LTree{...}:
30 TreePart := ntTree{45.0} @ {depth < n} | termTree *>;
31 }

Figure 5: Key fragments of GIGL code for the Tree example,
of the version with deterministic configuration. Grey “...”s
are omitted code. Full code for this and other examples is
available at https://z.umn.edu/gigl.

(a) n = 1 (8x) (b) n = 2 (4x) (c) n = 5 (d) Stochastic (e) Tuned

Figure 6: (a)(b)(c) The results of the Tree example when applying the L-system rule deterministically up to some depth n,
shown with both plain rendering and rich rendering. (d) Three trees generated with a less constricted randomization. (e) Three
trees generated with a better tuned randomization. Both (d) and (e) have a depth bound of 5.

plicitly call the node generator with the generate com-
mand and increment the depth (lines 17 - 20). The depth in-
formation is needed for the depth-limiting behavior, which
is further discussed in the following subsection.

Parametrization with Configure Parameters

The rule probabilities in item generation can be controlled
in GIGL via arbitrary lambda expressions. For example, ter-
mination may be more likely at certain levels of depths in
the tree, or even forced entirely. These expressions can de-
pend on local information (e.g. the depth), in which case
they must be evaluated when generating each node in the
item tree (as opposed to when setting the configuration). In
the Tree example, the depth<n on Line 30 is such a lambda
expression, meaning the probability to further expand (select
the ntTree rule) is 0 when the depth reaches n and 1 other-
wise. This sets the termination depth to n.

The item generation process can be further parametrized
by specifying parameters that can be set in the generator
configuration (called configure parameters). Rule probabili-
ties are by default configure parameters, additional ones can
be declared in braces such as the branch deg on Line 12,
which means the turning angle for branches. It is set with
a constant value 45 (degrees) on Line 30 here, but can in
general be an arbitrary lambda expression. Fig. 6a - 6c show
the results of this configuration, which are trees expanded to
exactly the specified depths with the L-system grammar.

Stochastic Generation. The above implementation faith-
fully executes the L-system, but the results are determinis-
tic and too symmetric. We can reduce the symmetry by oc-
casionally skipping left or right branches. GIGL has direct
support for this “maybe” type expansion. We can modify the
generator calls for the left and right children of the nt-
Tree rule (RHS of Line 18 and 19) to

generate<0.7> TreePart(depth+1, ...);

which specifies that there is 0.3 probability that the branch
is empty. In addition, we modify the rule part (lambda ex-
pressions) of the generator configuration on Line 30 into:
TreePart :=

ntTree{GetRandFloat(30.0,60.0)}
@{depth<n?0.8:0.0}|termTree

to randomize branch angles, and allow early termination.
The overall results can be seen in Fig. 6d.

Fine-tuning the Stochastic Expansion. The above results
show clear variation, however, the variation is too drastic and
not in a desired way. We prefer having less branches near the
bottom than near the top, and thinner branches more likely to
terminate early. We can achieve all these by simply passing
in more sophisticated functions for the rule probabilities and
the “maybe” probabilities. By replacing the probability for
ntTree with (depth<n?0.5+bottom w/max w:0.0) and
replacing the branch probability in the “maybe” genera-
tor calls with (2-3*top w/max w), where top w, bottom w
and max w are the width at the top and bottom of this tree
part and that at the bottom of the whole tree respectively, we
can significantly improve the results as shown in Fig. 6e.

Enforcing Constraints
An important consideration when using grammars for PCG
is the need to set hard constraints on rule expansions. In the
Tree example, it was possible to constrain the depth by using
lambda expressions to set rule probabilities. A more natural
expression of these constraints would allow “pre-selecting”
what rules are allowed based on local conditions. GIGL sup-
ports this paradigm though the use of pre-selector blocks
with statements that directly constrain rule selections (e.g.
forbid certain rules). We explore its use in a dungeon gener-
ator problem (called the Dungeon example).

The BSP Dungeon Generator
Following the approach in (Shaker et al. 2016), we use a
grammatical approach to generate procedural dungeon lev-
els based on binary space partitioning (BSP) trees, that re-
cursively split space into two parts. In creating the dungeon,
the each partition corresponds to a room (or set of rooms)
and the division from each split is connected with a corridor.
We encode this approach with the following item grammar:

DungeonArea :=

|hDivide(DungeonArea,DungeonArea, Corridor)

|vDivide(DungeonArea,DungeonArea, Corridor)

|tArea(Room)

(forbid vDivide when w < 2smin,

forbid hDivide when h < 2smin,

forbid tArea when w > smax or h > smax),

where w and h denote the width and height of the current
area of dungeon to generate. The values smin and smax con-
trol the size of the dungeons rooms by setting constraints

(a) Regular Dungeons (b) Boss Dungeons

Figure 7: Examples of dungeon generation (a) with no boss room and (b) with exactly one boss room. Brown indicates rooms,
yellow indicates corridors, red indicates boss rooms.

on the minimum and maximum side-length of the single-
room regions the splits are allowed to create. Example out-
put from this grammar (implemented in GIGL and rendered
with OpenGL in C++) is shown in Fig. 7a.

For generating interesting dungeons, we might want some
dungeon rooms to be special, such as those containing the
final boss of the level (referred to as boss rooms). We can
make each dungeon to contain exactly one, randomized boss
room also with the constraint mechanism. First, we add a
boolean parameter b to indicate whether or not to generate a
boss in this region. Second, we modify the implementation
of hDivide and vDivide such that they pass true to one child
area and false to the other as the value of b if the b of current
node is true, and pass in both false values otherwise. Third,
we add the following rule to the rule set for DungeonArea,
|bossArea(BossRoom)

(forbid bossArea when w > smax or h > smax or b = false),

so that the expansion terminates into a boss room instead of
a normal one when b is true. The result of this modification
is shown in Fig. 7b.

Encoding Constraints with Pre-selectors
The GIGL implementation of the constraints in the Dungeon
example can be done through the use of forbid statements in
the pre-selector block as follows:
if (w < 2 * s_min) forbid vDivide;
if (h < 2 * s_min) forbid hDivide;
if (w > s_max || h > s_max)

forbid tArea, bossArea;
else if (b)

forbid<transferto bossArea> tArea;
else

forbid<transferto tArea> bossArea;

Here forbid prevents a rule from being selected by set-
ting its probability to 0 and, by default, re-normalizing the
remaining probabilities. The option transferto X instead
specifies that the forbidden probability is added to the prob-
ability of some other rule X.

Analyses and Discussions
To facilitate a quantitative evaluation of GIGL, we created
the C++ counterparts for the Monster, Tree, and Dungeon
examples. C++ is chosen for comparison because GIGL has
C++ interfaces, which makes it a direct alternative to C++.
For the C++ versions, we adopt implementations that are
natural to each PCG problem (e.g. representing the two pos-
sible monster configurations with a boolean). This grants a

Original Compressed
C++ GIGL Ratio C++ GIGL Ratio

Monster 1.65 0.88 0.533 0.66 0.49 0.735
Tree 3.89 2.33 0.599 1.25 0.86 0.693

Dungeon 11.6 9.9 0.853 2.17 1.97 0.908

Table 1: The file size comparison (sizes are in KB) between
C++ and GIGL source files and their compressed files.

slight advantage to C++ in comparing code sizes and run
times, but at the cost of less generalizability.

Code Size Analyses
One metric for measuring a language’s expressiveness is the
size of the code needed to encode the algorithm. Here we
compare the size of the raw C++ and GIGL implementa-
tions. We also compare the corresponding compressed file
size (by 7-Zip to default zip format), to mitigate the depen-
dency on simple textual aspects such as keyword lengths.

The results of code size tests are displayed in Table 1. The
GIGL code is shorter, especially for the Monster and Tree
example, where GIGL saves 40% to 50% of the code. Even
for the compressed version, GIGL still has clear advantages.
The smaller saving ratio for the Dungeon example is pri-
marily due to large non-grammar parts (such as positioning
corridors, rendering etc.) being unaffected by GIGL.

Runtime Analyses
We run a performance analysis using the Dungeon example
(with a boss room), by comparing the run times of corre-
sponding C++ and GIGL code. We vary the side-length of
the dungeon between 100 and 1600 pixels. All runtime tests
are performed on a machine with an Intel Core 4.0 GHz pro-
cessor. In all cases, the GIGL run time was very short, with
even complex objects with hundreds of components (rooms
and corridors) being generated under a millisecond and their
access times being only on the order of microseconds.
Generate Time. We measure the time taken to generate the
dungeon by disabling all rendering related operations and
repeatedly generating and deleting random dungeons. The
results are shown in Fig. 8a. The GIGL code is nearly as
computationally efficient as C++, with both showing a linear
relation between runtime and dungeon area, and with little
performance difference between the two approaches.

(a) Generate Time (b) Access Time

Figure 8: Runtime Analyses A comparison of (a) time for
generating each dungeon and (b) time accessing a dungeon
for rendering purposes. Each chart shows the run times using
GIGL and C++ for increasing dungeon complexity which
scales with dungeon area. Run times are tested for 1 million
generations or accesses, and are averaged across 8 runs.

C++ GIGL
Size Gen. Acc. Size Gen. Acc.

ViewCull 11.6 381.3 20.4 9.9 394.2 20.3
Hierarchy 10.9 375.9 81.9 9.3 391.1 81.9

Flat 9.4 1392.0 75.8 - - -

Table 2: The file sizes (in KB), and run times (in µs) for gen-
erating (Gen.) and accessing (Acc.) on 1600×1600 (pixels)
dungeons, for different approaches to the Dungeon example,
and in C++ and GIGL. GIGL automatically creates hierar-
chies therefore is not tested for the Flat approach.

Access Time. We separately measure the performance of
accessing elements of the procedural generated items after
they have been created. Here, we create a single dungeon,
and write the central 600×600 of it to the frame buffer. Here
the frame buffer is not swapped to screen, to avoid adding
a same large overhead to all compared tests. As shown in
Fig. 8b, the results on this set of tests show almost no differ-
ence between GIGL and C++, which indicates that the im-
plementation of item structures in GIGL is efficient for item
access. Note that we are able to achieve a sub-linear growth
in access time by incorporating a spatial data structure in the
dungeon’s representation. The structures captured in GIGL
item types naturally support these kinds of hierarchical ac-
celeration data structure as discussed below.

Case Study: Hierarchical Accelerations
A key feature of GIGL is that the items generated auto-
matically retain the underlying hierarchical structures repre-
sented by the grammar. In many cases this structure can be
exploited for optimization. Here, we can exploit the tree-like
structure of the dungeon both to accelerate item generation
for finding corridor connections, and to accelerate item ac-
cessing for view-culling. Table 2 compares C++ and GIGL
implementations of these accelerations where Hierarchy ac-
celerates only the generation, ViewCull accelerates both, and
Flat accelerates none. The runtime results show clear ben-
efits of exploiting hierarchical structures both in generation
and accessing. This demonstrates the importance of retain-

ing those structures (i.e. item trees) in the generated objects.
In addition, in all tests, GIGL is smaller in code size and runs
almost as fast as its C++ counterparts. The C++ code can be
made as small as GIGL only by removing support for hierar-
chal structures (Flat), resulting in code that is much slower.
This further supports the conclusion that GIGL is effective
in efficiently expressing grammatical PCG while maintain-
ing good runtime performance.

Conclusion
In this paper, we propose GIGL, a DSL with expressive en-
coding for grammatical PCG that has direct interface with
C++, where generators generate C++ objects maintaining
the grammatical structures. GIGL provides important fea-
tures that allow users to control and constrain the stochas-
tic content generation process, e.g. lambda expressions in
setting configure parameters, and forbid statements in rule
pre-selectors. In addition, GIGL is implemented to be com-
pilable, and GIGL code is shown to have high runtime per-
formances (close to C++) with relatively small code size.

Our work has limitations which we wish to address in
future work including adding robust type-checking on the
GIGL source code, establishing compatibilities with other
domain specific language extensions of C/C++, and adding
more domain specific features such as support for machine
learning and automatic constraint solvers. As evaluating the
usability of a DSL is an open problem in the field, our fu-
ture work also includes exploring options of user studies on
effectiveness of GIGL in authoring.

Acknowledgment
This work has been supported in part by the NSF through
grants #CHS-1526693 and #CNS-1544887. In addition, the
discussions and technical supports from Travis Carlson and
Professor Eric Van Wyk in the MELT group are appreciated.

References
Arnold, J., and Alexander, R. 2013. Testing autonomous
robot control software using procedural content generation.
In International Conference on Computer Safety, Reliability,
and Security, 33–44. Springer.
Claessen, K., and Hughes, J. 2011. Quickcheck: a
lightweight tool for random testing of haskell programs.
Acm sigplan notices 46(4):53–64.
Compton, K.; Filstrup, B.; and Mateas, M. 2014. Tracery:
Approachable story grammar authoring for casual users. In
Seventh Intelligent Narrative Technologies Workshop.
Cutler, B.; Dorsey, J.; McMillan, L.; Müller, M.; and Jag-
now, R. 2002. A procedural approach to authoring solid
models. In ACM Transactions on Graphics (TOG), vol-
ume 21, 302–311. ACM.
Emilien, A.; Bernhardt, A.; Peytavie, A.; Cani, M.-P.; and
Galin, E. 2012. Procedural generation of villages on arbi-
trary terrains. The Visual Computer 28(6-8):809–818.
Epic Games. 1998. Unreal Engine. https:
//www.unrealengine.com/en-US/
what-is-unreal-engine-4. Accessed: 2017-09-11.

Germer, T., and Schwarz, M. 2009. Procedural arrange-
ment of furniture for real-time walkthroughs. In Computer
Graphics Forum, volume 28, 2068–2078. Wiley Online Li-
brary.
Hastjarjanto, T.; Jeuring, J.; and Leather, S. 2013. A dsl
for describing the artificial intelligence in real-time video
games. In Proceedings of the 3rd International Workshop on
Games and Software Engineering: Engineering Computer
Games to Enable Positive, Progressive Change, 8–14. IEEE
Press.
Hernandez, F. E., and Ortega, F. R. 2010. Eberos gml2d:
a graphical domain-specific language for modeling 2d video
games. In Proceedings of the 10th Workshop on Domain-
Specific Modeling, 1–1. ACM.
Howland, K.; Good, J.; and Robertson, J. 2006. Script
cards: a visual programming language for games author-
ing by young people. In Visual Languages and Human-
Centric Computing, 2006. VL/HCC 2006. IEEE Symposium
on, 181–186. IEEE.
Kaminski, T.; Kramer, L.; Carlson, T.; and Van Wyk, E.
2017. ablec: Extensible specification of c using the silver
attribute grammar system.
Kempen, G., and Hoenkamp, E. 1987. An incremental pro-
cedural grammar for sentence formulation. Cognitive sci-
ence 11(2):201–258.
Khalifa, A., and Togelius, J. 2017. Marahel: A language for
constructive level generation.
Krecklau, L., and Kobbelt, L. 2012. Interactive modeling
by procedural high-level primitives. Computers & Graphics
36(5):376–386.
Lindenmayer, A. 1968. Mathematical models for cellular in-
teractions in development i. filaments with one-sided inputs.
Journal of theoretical biology 18(3):280–299.
Marques, E.; Balegas, V.; Barroca, B. F.; Barisic, A.; and
Amaral, V. 2012. The rpg dsl: a case study of language
engineering using mdd for generating rpg games for mobile
phones. In Proceedings of the 2012 workshop on Domain-
specific modeling, 13–18. ACM.
Martens, C. 2015. Ceptre: A language for modeling gener-
ative interactive systems. In Eleventh Artificial Intelligence
and Interactive Digital Entertainment Conference.
McCormack, J. 2005. A developmental model for generative
media. In European Conference on Artificial Life, 88–97.
Springer.
Merrell, P., and Manocha, D. 2008. Continuous model syn-
thesis. In ACM transactions on graphics (TOG), volume 27,
158. ACM.
Merrick, K. E.; Isaacs, A.; Barlow, M.; and Gu, N. 2013.
A shape grammar approach to computational creativity
and procedural content generation in massively multiplayer
online role playing games. Entertainment Computing
4(2):115–130.
Osborn, J. C.; Lambrigger, B.; and Mateas, M. 2017. Hyped:
Modeling and analyzing action games as hybrid systems. In
Thirteenth Artificial Intelligence and Interactive Digital En-
tertainment Conference.

Parish, Y. I., and Müller, P. 2001. Procedural modeling
of cities. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, 301–308.
ACM.
Ryan, J.; Mateas, M.; and Wardrip-Fruin, N. 2016. Charac-
ters who speak their minds: Dialogue generation in talk of
the town. Proc. AIIDE.
Schaul, T. 2013. A video game description language for
model-based or interactive learning. In Computational In-
telligence in Games (CIG), 2013 IEEE Conference on, 1–8.
IEEE.
Shaker, N.; Nicolau, M.; Yannakakis, G. N.; Togelius, J.; and
O’neill, M. 2012. Evolving levels for super mario bros using
grammatical evolution. In Computational Intelligence and
Games (CIG), 2012 IEEE Conference on, 304–311. IEEE.
Shaker, N.; Liapis, A.; Togelius, J.; Lopes, R.; and Bidarra,
R. 2016. Constructive generation methods for dungeons
and levels. In Procedural Content Generation in Games.
Springer. 31–55.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2016. Procedural
Content Generation in Games. Springer.
Smelik, R. M.; Tutenel, T.; de Kraker, K. J.; and Bidarra,
R. 2011. A declarative approach to procedural modeling of
virtual worlds. Computers & Graphics 35(2):352–363.
Smith, G.; Treanor, M.; Whitehead, J.; and Mateas, M. 2009.
Rhythm-based level generation for 2d platformers. In Pro-
ceedings of the 4th International Conference on Foundations
of Digital Games, 175–182. ACM.
Smith, A. R. 1984. Plants, fractals, and formal languages.
ACM SIGGRAPH Computer Graphics 18(3):1–10.
Talton, J. O.; Lou, Y.; Lesser, S.; Duke, J.; Měch, R.; and
Koltun, V. 2011. Metropolis procedural modeling. ACM
Transactions on Graphics (TOG) 30(2):11.
Tang, S.; Hanneghan, M.; Hughes, T.; Dennett, C.; Cooper,
S.; and Sabri, M. A. 2008. Towards a domain specific mod-
elling language for serious game design. In 6th International
Game Design and Technology Workshop, Liverpool, UK.
Togelius, J.; Kastbjerg, E.; Schedl, D.; and Yannakakis,
G. N. 2011. What is procedural content generation?: Mario
on the borderline. In Proceedings of the 2nd international
workshop on procedural content generation in games, 3.
ACM.
Tomás, A. P., and Leal, J. P. 2013. Automatic generation
and delivery of multiple-choice math quizzes. In Interna-
tional Conference on Principles and Practice of Constraint
Programming, 848–863. Springer.
Toto, F. S. G., and Vessio, G. 2014. A probabilistic
grammar for procedural content generation. In Sixth Work-
shop on Non-Classical Models of Automata and Applica-
tions (NCMA 2014), 31.
Unity Technologies. 2004. Unity. https://unity3d.
com/. Accessed: 2017-09-11.
Van Wyk, E.; Bodin, D.; Gao, J.; and Krishnan, L. 2010.
Silver: An extensible attribute grammar system. Science of
Computer Programming 75(1-2):39–54.

