
Stochastic Tree Search with Useful Cycles for Patrolling Problems

Bilal Kartal, Julio Godoy, Ioannis Karamouzas, and Stephen J. Guy

Abstract— An autonomous robot team can be employed for
continuous and strategic coverage of arbitrary environments
for different missions. In this work, we propose an anytime
approach for creating multi-robot patrolling policies. Our
approach involves a novel extension of Monte Carlo Tree
Search (MCTS) to allow robots to have life-long, cyclic policies
so as to provide continual coverage of an environment. Our
proposed method can generate near-optimal policies for a team
of robots for small environments in real-time (and in larger
environments in under a minute). By incorporating additional
planning heuristics we are able to plan coordinated patrolling
paths for teams of several robots in large environments quickly
on commodity hardware.

I. INTRODUCTION

Multi-robot systems are nowadays commonly used to
perform critical tasks, such as search and rescue operations,
intelligent farming, mine sweeping and environmental mon-
itoring [24]. In such tasks, robots have to observe or sweep
an environment by solving a coverage planning problem. A
variant of this problem is the multi-robot patrolling problem,
in which multiple robots must coordinate their motions
in order to minimize the probability of intrusion. Unlike
coverage, patrolling needs to be performed continuously and
in a strategic manner, given its adversarial nature.

The multi-robot patrolling problem has been an active
research area within the last decade, especially as more
and more autonomous robots are available for surveillance
tasks at low costs. This problem is NP-hard in its general
sense [6]. Therefore, several heuristics and approximation
algorithms have been proposed, with efficient solutions found
for simple cases. In this paper, we adapt Monte Carlo Tree
Search (MCTS) algorithm [12] to generate patrolling policies
across arbitrary environments. MCTS can successfully search
in large domains by using random sampling. The algorithm
is anytime and converges to optimal solutions given enough
time and memory for finite-horizon problems.

One of the main challenges to adapt MCTS to the pa-
trolling domain is the ability to generate infinite length
policies; the policies generated by MCTS are valid for a
small time horizon while patrolling task has to be performed
continuously. We address this issue by introducing Monte
Carlo Tree Search with Useful Cycles, MCTS-UC, which
augments standard MCTS with cyclic nodes to return infinite,
cyclic policies.

This work makes three contributions. First, we propose the
use of stochastic tree search for patrolling policy generation.

*This work was supported in part by the University of Minnesota
Supercomputing Institute

The authors are with the Department of Computer Science and
Engineering, University of Minnesota, Minneapolis, MN, USA.
{bilal,godoy,ioannis,sjguy}@cs.umn.edu

Second, we show how useful cycles can be incorporated into
MCTS to efficiently generate continuous cyclic policies with-
out losing convergence guarantees. Finally, we experimen-
tally show the applicability of MCTS-UC across a variety
of scenarios. Coupled with a pruning heuristic, our approach
can generate policies for intractably large environments.

II. RELATED WORK

In this section, we overview relevant work in the areas of
multi-robot patrolling and MCTS. We refer the reader to the
surveys presented in [22] and [5] for more details.

A. Multi-robot Patrolling Problem

The multi-robot patrolling problem has been studied since
at least the work of Machado et al. [14] and a diversity
of patrolling strategies have been theoretically analyzed in
the following years [6], [19], [21]. Patrolling strategies for
multiple robots can be computed either in a centralized
manner where a central entity computes the policy for all the
robots [4], or in a decentralized manner where each robot
computes its own policy based on its local state [15]. In
general, centralized approaches lead to more optimal policies
than its decentralized counterparts, but are more computa-
tionally demanding as the policy space is exponential with
respect to the number of robots in the environment. In this
paper, we plan over the joint patroller space and convert the
resulting centralized policy into individual policies that each
of the robots should follow.

Theoretical bounds on penetration probabilities for dif-
ferent types of intruders have been analyzed in both line
and perimeter environments [2]. A diversity of strategies
for patrollers have been proposed to account for static and
stochastic intruders [1], including multiple intruders perform-
ing coordinated attacks [23]. Game theoretic formulations
of the patrolling problem have also been analyzed where
interactions between patrollers and intruders are modeled as
a leader-follower game [4], [18]. Previous work has also
focused on extending the longevity of the patrolling task by
replacing robots based on their battery life [10]. In a recent
work [20], a trust model has been proposed such that poorly
performing patrollers are identified and patrolling tasks are
reassigned dynamically.

A closely related problem to patrolling is the pursuit-
evasion problem which has been extensively studied for
single and multiple pursuer agents, see [7] for a recent
survey. In Section III-B, we demonstrate how our approach
can be applied to the pursuit-evasion problem studied in [17].

B. Monte Carlo Tree Search

Monte Carlo Tree Search is a heuristic search algorithm
that has been particularly recognized after its breakthrough
performance in the game Go [8]. Other than board and
video games [9], MCTS has been further employed for a
variety of domains ranging from optimized planning [13]
to computerized narrative generation [11]. In this work, we
use MCTS following the approach [12] which employs UCB
(Upper Confidence Bounds) technique to balance exploration
vs. exploitation during planning and present an extension to
MCTS for infinite horizon settings in patrolling problems.

III. MCTS FOR MULTI-ROBOT PATROLLING

MCTS is an anytime sampling based method, and all it
needs is a strategy evaluation function for complete policies.
This simplicity of requirements motivated us to investigate
MCTS for the patrolling problem. The approach can easily
be extended to arbitrary patrol environments and different
arbitrary scenarios, since it will search for the optimal
strategy with random sampling in an anytime fashion.

A. Problem Formulation

In our problem setting, we are given n patroller robots,
r = {r1, . . . , rn}, that have to periodically cover an environ-
ment to guard it from intrusions. For simplicity, we model
the environment as an undirected graph G = (V,E), where
the vertices V denote the patrol regions and the edges E
represent the connectivity between these regions. We assume
that time can be discretized, and elimination of an intruder
is instantaneous. Initially, at t = 0, each robot is placed at
some vertex of the graph. At each discrete time step, the
possible actions for a robot are to move to a neighbor vertex
in G or to stay still. Multiple robots are allowed to occupy
the same vertex simultaneously.

We assume that an intruder q enters the environment at
a specified time te, and it takes tp time steps to complete
a successful attack. As typically assumed in the literature
(e.g. [1], [2]), the intruder has the same motion model as
the patroller robots, but this can also be altered to different
models easily. We further assume that the intruder can enter
the environment from any vertex in V . Two intruder models
are considered:

1) Dynamic: The intruder enters at a random vertex at the
same time as the patroller robots, te = 0, and performs
a random walk exploring the environment.

2) Stationary: The intruder enters at a random time
te ≥ 0, at a random vertex and spends tp timesteps
at the location completing the intrusion.

Given a patroller team r and a single intruder q following
one of the above models, our goal is to find a joint policy
π for the robots that maximizes the likelihood of capturing
the intruder before the attack is successful. We evaluate any
policy π using the following function:

R(π) =

{
1 if ∃ri ∈ r s.t. ri(t) = q(t) and t ≤ te + tp

0 otherwise
(1)

Algorithm 1: MCTS Algorithm.
Input : Budget
Output: Policy
while Budget > 0 do

Node ← ucbSelection(root) ;
ω ← rollout(node);
backpropagate(R(ω)) ;
Budget = Budget−1 ;

end

where ri(t) denotes the location of ri at time t and q(t) is the
intruder’s location at t. From Eq. 1, we assume a robot can
only sense an intruder on the vertices of G at discrete time
steps. We assumed discrete sensing model since continuous
sensing causes more power usage and noisier observations
that might be caused by robot motor noise or camera image
blur. Importantly, this assumption makes the problem more
challenging in the presence of dynamic intruders; if the
intruder moves past a patroller while it crosses an edge, the
intruder will not be detected.

B. Policy Generation

In this section, we explain how the MCTS approach can
be employed to the multi-robot patrolling problem in order
to generate near-optimal finite length trajectories for the
patrolling robots.

An overview of the MCTS is presented in Algorithm 1.
The algorithm maintains a tree structure where each node
represents the complete state of the world, st, consisting
of the locations of the robots at a certain time t, with t
also referring to the depth of the node in the tree. The
root of the tree contains the initial state of the world that
corresponds to the initial locations of robots. Each link in
the tree represents one possible joint action set consisting of
n actions, one per each robot. The MCTS algorithm proceeds
by repeatedly adding one node at a time to the current tree
until a given budget (e.g., number of simulations) is met. The
newly added node represents the resulting world state after
applying the corresponding joint action to the robot team.
For each potential joint action set, we keep track of how
many times we have tried it, and what its average evaluation
score is.

MCTS generates policies through uniform random roll-
outs. A simulated policy ω consists of a sequence of joint
action sets:

ω = {a1, a2, . . . az, ξ1, ξ2, . . . ξx}, (2)

where each ai refers to deterministic action sets obtained
from the existing tree and each ξi refers to uniform random
action sets. The task of random rollouts is to provide a
probabilistic evaluation of incomplete deterministic policies.
After evaluating ω using Eq. 1, the resulting R(ω) is used
to update the average evaluation scores from the leaf node
to the root node while incrementing their visit counts, in a
process known as back-propagation.

Choosing which child node to expand, that is, choos-
ing which action set to employ next, is an exploration-
exploitation problem. We want to primarily choose action
sets that have high average evaluation scores, but we also
need to explore other possible actions in case the random
rollout was unlucky and does not capture the true potential
of that joint action set. The exploration-exploitation dilemma
has been well studied in AI in the context of Multi-armed
bandit problem. In this work, we chose to use the Upper
Confidence Bounds (UCB) approach [3]. The overall process
of combining MCTS with UCB is often referred to as Upper
Confidence Trees (UCT), which has been proven to converge
to optimal solutions at polynomial rate for finite-horizon
problems [12]. Applied to our problem formulation, each
node n chooses its child c with the largest value of f(c):

f(c) =W (πc) +

√
2 lnnv
cv

(3)

where W (.) denotes the average evaluation score obtained
by Eq. 1, πc is the parent’s policy so far including node c,
nv is the total number of times the parent node n has been
visited, and cv is the total number of times that the action
transitioning node n to node c has been previously tried.

If a node with unexplored child is reached (cv = 0) a new
node is created for one of the unexplored action sets. After
the rollout and back-propagation steps, the selection step is
started from the root node again. This way, the tree can grow
in an uneven manner, biased towards good policies. After a
budget of a fixed number of rollouts has been reached, we
construct the final policy π by walking down the tree from
the root node by recursively selecting action sets with highest
visit counts until hitting a non-parent node.

To demonstrate the suitability of standard MCTS in pol-
icy generation, we apply it to the pursuit-evasion problem
described by Noori et al. [17]. Here the task is to find an
optimal pursuing strategy on a line (see Fig. 2(b)) for a
modified random walker evader that always moves either left
or right, where te = 0 and tp varies. The authors employed
an MDP analysis to show that their results are near optimal.
For this problem, MCTS generates policies with competitive
capture probabilities for a budget of 1M as shown in Ta-
ble I. The resulting policies are approximately equal to the
scores reported in the MDP analysis across all the authors’
scenarios, slightly over-performing for smaller policy lengths
and slightly under-performing for larger policy lengths. This
near-optimality motivated our extensions to MCTS for the
patrolling domain as explained in the following section.

tp = 9 tp = 14 tp = 19 tp = 24 tp = 29
Noori et al. [17] 0.297 0.429 0.564 0.710 0.803
MCTS 0.301 0.432 0.569 0.692 0.740

TABLE I
CAPTURE PROBABILITIES FOR A LINE WHERE |V | = 21.

Algorithm 2: Rollout with cylic action sets
Input: leafNode
if leafNode == CyclicArm then

PerformCyclicActions() ;
else

RandomRollout();
end

Algorithm 3: Backpropagation with cyclic arm creation
Input: leafNode
tempNode ← leafNode.getParent();
while tempNode ! = root do

if tempNode == leafNode then
leafNode.CreateCyclicSiblingArm();

end
tempNode ← tempNode.getParent();
UpdateVisitCounts();
UpdateWinrates();

end

IV. MONTE CARLO TREE SEARCH WITH USEFUL
CYCLES (MCTS-UC)

Standard MCTS is limited to produce finite policies for fi-
nite search budgets. However, the patrolling problem requires
the generation of infinite policies. To address this issue,
we propose an MCTS variant, Monte Carlo Tree Search
with Useful Cycles (MCTS-UC) that generates continuous
cyclic policies for the patroller team. The notion of useful
cycles has been previously studied by Nieuwenhuisen and
Overmars [16] to improve path quality on probabilistic
roadmaps. Following their work, we define a useful cycle
as a set of patrolling paths that starts and ends in the same
vertex set for all robots. Therefore, we exploit the spatial
similarity of visited vertices of patrollers, i.e. whether the
same set of vertices are visited between any two states or
not, to determine a useful cycle. In terms of implementation,
MCTS-UC creates artificial cyclic nodes which represent
continuous policies. These nodes will be part of the tree
search during exploration-exploitation. Our MCTS-UC algo-
rithm is summarized in Algorithms 2-3.

A. Spatial Similarity for State Equivalence

To find a useful cycle and generate a cyclic node, our
approach first needs to determine the spatial similarity of
robot locations among different states. We assume that two
states are equivalent if the same set of vertices are occupied
by the patrollers in both states. We check for equivalent states
during back-propagation step (see Algorithm 3).

Consider, for example, two equivalent nodes A and B as
shown in Fig. 1(a). Given these equivalent nodes, a cyclic
node, node C, is created as a sibling arm to node B and its
cyclic parent node is set to node A as depicted in Fig. 1(b).
Node C will be part of UCB selection phase just as any
ordinary arm. When node B is selected after creating node

A

B

(a)

A

B C

(b)
Rollout

A

B C

(c)

Fig. 1. Overview of Monte Carlo Tree Search with Useful Cycles: (a) During the back-propagation of node B, node A is found to have the same state.
(b) A new cyclic node C is created to capture the cycle. (c) While node B is evaluated with standard rollouts, node C is evaluated cyclically.

C, we do a roll-out and expand the tree as in standard MCTS.
However, if the cyclic node C is selected in further iterations
of MCTS-UC, our algorithm creates a cyclic action buffer
by pushing actions one by one while walking up the tree
from itself to its cyclic parent (i.e. node A) and continuously
performs these actions (Fig. 1(c)), evaluates the cyclic policy
and back-propagates the policy score through the non-cyclic
parent nodes as in standard MCTS. We should also note that
both nodes A and B storing the equivalent states are kept
unchanged to maintain the integrity of MCTS convergence
conditions.

B. Mapping cycles to robots

We define a cycle portion ψ = {Vbegin, . . . , Vend} of a
patrol graph G as the set of vertices that transitions a robot
from Vbegin to Vend. For n robots, a cycle is comprised of
n cycle portions between any equivalent two states. Let Ai

denote the set of action sets corresponding to cycle portion
ψi, ∀i ∈ [1, n]. Then, we can obtain a cyclic coverage in G
if and only if all cycle portions, ψ1, . . . , ψn are covered by
some robot every |Ai| time steps. Note that |Ai| = |Aj | ∀i, j.

In order to generate a feasible cycle of actions for each
robot, it is necessary to match each cycle portion to the
corresponding robot every |Ai| time steps. To find this
matching, our MCTS-UC implementation maintains a list
that keeps the first vertex Vbegini

of each cycle portion ψi.
Let pi ∈ V denote the location of robot ri. Then, we can
assign robot ri to ψj if and only if pi = Vbeginj

and there
is at least one Vbeginj in the list for any i, j. After the
assignment we remove one instance of Vbeginj from the list
and continue until the list is empty. If there exist multiple
cycle portions with the same first vertex, we can assign the
robot to any of the cycle portions arbitrarily as robots are
assumed identical.

C. Convergence of MCTS-UC

MCTS-UC shares the convergence properties of the orig-
inal MCTS for finite horizon problems. On one hand, the
UCB equation (Eq. 3) guarantees that exploration always
continues. On the other hand, the artificially added cyclic
arms’ rewards are also identically and independently dis-
tributed by Hoeffdings inequality as cyclic nodes are also
evaluated for the same probabilistic intruder model. Similar
to MCTS, the convergence analysis of MCTS-UC is also

based on non-stationary arms having rewards sequences
satisfying two drift conditions: 1) The expected average
value of the arms has to converge to their true values
Xin = 1

n

∑n
k=1Xik, where Xik refers to the reward of i’th

arm and k’th trial. From our policy evaluation function
(Eq. 1) we know that 0 ≤ Xik ≤ 1 holds. Since we employ
cyclic action sets repeatedly when cyclic nodes are selected,
cyclic arms converge to their true values faster, empirically,
as cyclic action sets lead to the coverage of the same regions
repeatedly. 2) The tail distribution criteria should also be
satisfied [12]. In MCTS-US this is true, since all cyclic and
non-cyclic arms’ rewards are identically and independently
distributed.

We should note that as MCTS-UC has additional cyclic
nodes at different levels of the tree, the required time to
converge to the optimal policy might increase. For instance,
if cyclic nodes close to the root node lead to sub-optimal but
much better policies than that of sibling nodes, we might end
up having longer convergence time.

D. Iterative MCTS-UC

Both MCTS and MCTS-UC generate an asymmetric tree
as they grow the tree in regions where they estimate the
existence of better solutions. However, for many problems
including the multi-robot patrolling problem many symmet-
ric solutions might exist that neither MCTS nor MCTS-UC
are able to distinguish. For example, patrolling clockwise
or counter-clockwise on a perimeter can be equally optimal
according for a stationary intruder. Symmmetrical solutions
causes scalability challenges and high amount of unnecessary
exploration. Also, we have scalability issues while using
MCTS or MCTS-UC standalone due to large team and envi-
ronment sizes. For example, the branching factor can easily
reach thousands in a grid graph where n = 5. To address
these scalability issues, we employ a previously proposed
Iterative heuristic [11] that scales very well and generates
locally optimal solutions for scenarios that are intractable for
standard MCTS methods. The Iterative MCTS-UC algorithm
commits to the best evaluated action at every fixed iteration
budget, and prunes all other nodes at that level. Selection
of a cyclic node at the end of any iteration terminates the
search and returns the corresponding cyclic policy.

(a) (b) (c) (d)

Fig. 2. Examples of patrol graphs used in our experiments for n robots:(a) A circular scenario where |V | = 8 and n = 2. (b) A line scenario where
|V | = 4 and n = 1. (c) A grid scenario where |V | = 25 and n = 1. (d) A grid scenario with obstacles where |V | = 19 and n = 2.

Budget 1K 10K 500K 3M 5M 6M
MCTS 0.1778 0.231 0.2698 0.3012 0.3125 -
MCTS-UC 0.1612 0.171 0.255 0.3217 1 1

TABLE II
CAPTURE PROBABILITIES IN A PERIMETER WITH |V | = 15 AND n = 3.

V. RESULTS

We evaluated our MCTS-UC algorithm by comparing it
to standard MCTS in terms of capture probability in three
different environments: a line, a perimeter, and a 2D grid as
shown in Fig. 2. We considered the two types of intruder
strategies described in Section III-A.

A. MCTS vs MCTS-UC

As previously discussed, infinite length policies are re-
quired in the multi-robot patrolling domain. Unlike standard
MCTS, our MCTS-UC approach can successfully generate
such policies. Table II shows the capture probabilities of
a stationary intruder on a perimeter (Fig. 2(a)), where the
number of vertices |V | is 15 and the number of patrollers
n is 3. As it can be seen in Table II, for large simulation
budgets MCTS-UC leads to policies with higher capture
probabilities. However, for smaller budgets up to 500K,
MCTS is slightly better than MCTS-UC. The reason behind
this is that MCTS-UC invests some of its exploration budget
on creating cyclic nodes, which pays off when a larger budget
is available (≥ 3M simulations), converging to an optimal
cyclic policy given a budget of 5M simulations. In contrast,
MCTS produces short-term policies for the same budget
sizes, and is intractable after 5M explored nodes.

In a grid environment with n = 2 and a dynamic intruder
(Fig. 2(c)) MCTS-UC outperforms MCTS for varying tp’s as
shown in Table III. Note that the capture probability never
reaches 1, as intruders that cross paths with patrollers (in
edges) are not captured. In the same scenario with n = 1
against a stationary intruder, MCTS-UC creates policies with
capture probability of 0.81, and 1 for tp = 25, and tp = 50
respectively.

B. Patrolling Strategies Evaluation

We have shown that MCTS-UC generates continuous
policies where standard MCTS fails to do so. We also
compare our generated policy with the optimal policy for a

given environment. For perimeter patrolling, the optimality
of cyclic strategies has been proven for single and multiple
robots [6]. For multiple robots, optimality holds if the robots
are placed equidistantly and they move in the same direction.
Our approach, MCTS-UC, generates optimal cyclic policies
even if all robots start to patrol from the same vertex. Fig. 3,
for example, shows the trajectories of 2 robots patrolling
on a perimeter. Starting from the same vertex, the robots
move initially to opposite directions and place themselves
equidistantly after 2 time steps, after which they patrol in
the same direction indefinitely.

MCTS-UC can also generate partitions of the patrolling
space in an emergent fashion. For example, Fig. 2(d) depicts
a stationary intruder in a grid environment with obstacles
and two patrollers. Our approach partitions the grid into
two cycle portions covering the top and bottom regions with
each robot patrolling its own partition. Videos can be seen
at http://motion.cs.umn.edu/r/MCTS-UC

tp = 30 tp = 40 tp = 50
MCTS 0.532 0.551 0.592
MCTS-UC 0.626 0.774 0.829

TABLE III
CAPTURE PROBABILITIES IN A GRID ENVIRONMENT WITH |V | = 25

AND n = 2. BUDGET IS FIXED TO 1280K NODES.

C. Performance Analysis

1) Scalability: Besides having better capture probabilities
than MCTS, MCTS-UC uses an order of magnitude less
memory than MCTS. This is because whenever a useful
cyclic node is selected, the search tree will not grow for
that simulation as the cyclic action set will be performed
repeatedly. However, computing policies for all robots can
be prohibitively expensive for large environments. In these
cases, heuristics that reduce the search space can mitigate
the problem. For this purpose, we evaluated MCTS-UC with
the Iterative heuristic on a 20x20 grid where |V | = 400,
n = 2, and tp = 200 for a dynamic intruder. We compare
the capture probabilities of MCTS-UC with and without the
Iterative heuristic. In this scenario, even a simple sweep of
the environment requires 200 optimal moves which makes
the problem intractable for MCTS-UC without the Iterative
heuristic when using large budgets.

0	

1	

2	

3	

4	

5	

6	

7	

0	 2	 4	 6	 8	 10	 12	 14	 16	

Vi
si
te
d	
Ve

rt
ex
	

Time	 	 step	

Robot	 1	

Robot	 2	

Fig. 3. Trajectories of 2 robots on a perimeter, |V | = 8. Both robots start at
the same vertex and they adjust their placements to equidistant vertices and
patrol in the same direction continuously. V7 and V0 are adjacent vertices.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.01	 0.1	 1	 10	 100	

Ca
pt
ur
e	
Pr
ob

ab
ili
ty
	

Budget	 (in	 millions	 of	 simula7ons)	

Itera/ve	

Non-‐itera/ve	

Fig. 4. Capture probabilities of Iterative MCTS-UC as compared to
standard MCTS-UC (x-axis is log-scaled).

2) Runtime: The runtime of MCTS based approaches
relies on the branching factor and the depth of the search tree.
The Iterative heuristic provides runtime improvement in later
simulations as it increases the number of initial committed
steps. We can observe in Fig. 4 that Iterative MCTS-UC is
able to find better policies with larger budgets in less time.
For the perimeter scenario shown in Fig. 2(a), MCTS-UC
requires 10 seconds to obtain an optimal policy, and the
grid scenario shown in Fig. 2(b) requires one minute for
an optimal solution with MCTS-UC.

VI. CONCLUSION

We have presented an anytime approach capable of gener-
ating continuous policies for patrolling problems with differ-
ent intruder models. Our approach exploits spatial similarity
of different robot configurations with time shifts to create
infinitely long policies from finite simulation budget. It
generates theoretically proven optimal policies for perimeters
and near-optimal policies for arbitrary environments. One
limitation of using MCTS-UC in our domain is the high
branching factor due to joint-action space. While its spatial
complexity scales polynomially with respect to the environ-
ment size, the degree of each node scales exponentially with
respect to the number of robots, e.g. grid environments with
n ≥ 5 are intractable for MCTS-UC as the branching factor
exceeds one thousand. To alleviate this challenge, we will
explore MCTS parallelization techniques. Lastly, we plan to
investigate more complex classes of patrolling problems by
prioritizing target points, or by limiting intruders to specific
entry and exit points.

REFERENCES

[1] N. Agmon, G. A. Kaminka, and S. Kraus. Multi-robot adversarial
patrolling: Facing a full-knowledge opponent. Journal of Artificial
Intelligence Research, 42:887–916, 2011.

[2] N. Agmon, S. Kraus, and G. A. Kaminka. Multi-robot perimeter patrol
in adversarial settings. In IEEE International Conference on Robotics
and Automation, pages 2339–2345, 2008.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of
the multiarmed bandit problem. Machine learning, 47(2-3):235–256,
2002.

[4] N. Basilico, N. Gatti, and F. Villa. Asynchronous multi-robot patrolling
against intrusions in arbitrary topologies. In Twenty-Fourth AAAI
Conference on Artificial Intelligence, 2010.

[5] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton.
A survey of monte carlo tree search methods. IEEE Trans. on
Computational Intelligence and AI in Games, 4(1):1–43, 2012.

[6] Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling
problem. In Proceedings of Intelligent Agent Technology (IAT), 2004.

[7] T. H. Chung, G. A. Hollinger, and V. Isler. Search and pursuit-evasion
in mobile robotics. Autonomous Robots, 31(4):299–316, 2011.

[8] M. Enzenberger, M. Muller, B. Arneson, and R. Segal. Fuego—an
open-source framework for board games and go engine based on monte
carlo tree search. IEEE Trans. on Computational Intelligence and AI
in Games, 2(4):259–270, 2010.

[9] E. J. Jacobsen, R. Greve, and J. Togelius. Monte mario: platforming
with MCTS. In Proceedings of the 2014 conference on Genetic and
evolutionary computation, pages 293–300, 2014.

[10] E. Jensen, M. Franklin, S. Lahr, and M. Gini. Sustainable multi-
robot patrol of an open polyline. In IEEE International Conference
on Robotics and Automation, pages 4792–4797, 2011.

[11] B. Kartal, J. Koenig, and S. J. Guy. User-driven narrative variation
in large story domains using monte carlo tree search. In Autonomous
agents and multi-agent systems, pages 69–76, 2014.

[12] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In
Machine Learning: ECML 2006, pages 282–293. Springer, 2006.

[13] M. Levihn, J. Scholz, and M. Stilman. Hierarchical decision theoretic
planning for navigation among movable obstacles. In Algorithmic
Foundations of Robotics X, pages 19–35. Springer, 2013.

[14] A. Machado, G. Ramalho, J.-D. Zucker, and A. Drogoul. Multi-agent
patrolling: An empirical analysis of alternative architectures. In Multi-
Agent-Based Simulation II, pages 155–170. Springer, 2003.

[15] A. Marino, L. Parker, G. Antonelli, and F. Caccavale. Behavioral con-
trol for multi-robot perimeter patrol: A finite state automata approach.
In IEEE International Conference on Robotics and Automation, pages
831–836, 2009.

[16] D. Nieuwenhuisen and M. H. Overmars. Useful cycles in probabilistic
roadmap graphs. In IEEE International Conference on Robotics and
Automation, volume 1, pages 446–452, 2004.

[17] N. Noori, A. Renzaglia, and V. Isler. Searching for a one-dimensional
random walker: Deterministic strategies with a time budget when
crossing is allowed. In IEEE/RSJ International Conference on In-
telligent Robots and Systems, pages 4811–4816, 2013.

[18] P. Paruchuri, J. P. Pearce, M. Tambe, F. Ordonez, and S. Kraus. An
efficient heuristic approach for security against multiple adversaries.
In Autonomous agents and multiagent systems, page 181, 2007.

[19] F. Pasqualetti, A. Franchi, and F. Bullo. On cooperative patrolling: Op-
timal trajectories, complexity analysis, and approximation algorithms.
Robotics, IEEE Transactions on, 28(3):592–606, 2012.

[20] C. Pippin and H. Christensen. Trust modeling in multi-robot patrolling.
In IEEE International Conference on Robotics and Automation, pages
59–66, 2014.

[21] D. Portugal, C. Pippin, R. P. Rocha, and H. Christensen. Finding
optimal routes for multi-robot patrolling in generic graphs. In Intelli-
gent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on, pages 363–369. IEEE, 2014.

[22] D. Portugal and R. Rocha. A survey on multi-robot patrolling
algorithms. In Technological Innovation for Sustainability, pages 139–
146. Springer, 2011.

[23] E. Sless, N. Agmon, and S. Kraus. Multi-robot adversarial patrolling:
facing coordinated attacks. In Autonomous agents and multi-agent
systems, pages 1093–1100, 2014.

[24] J. Vander Hook, P. Tokekar, E. Branson, P. G. Bajer, P. W. Sorensen,
and V. Isler. Local-search strategy for active localization of multiple
invasive fish. In Experimental Robotics, pages 859–873, 2013.

