
NH-TTC: A gradient-based framework for
generalized anticipatory collision avoidance

Bobby Davis∗, Ioannis Karamouzas†, and Stephen J Guy∗
∗University of Minnesota †Clemson University

Abstract—We propose NH-TTC, a general method for fast,
anticipatory collision avoidance for autonomous robots with
arbitrary equations of motions. Our approach exploits implicit
differentiation and subgradient descent to locally optimize the
non-convex and non-smooth cost functions that arise from plan-
ning over the anticipated future positions of nearby obstacles.
The result is a flexible framework capable of supporting high-
quality, collision-free navigation with a wide variety of robot
motion models in various challenging scenarios. We show results
for different navigating tasks, with various numbers of agents
(with and without reciprocity), on both physical differential
drive robots, and simulated robots with different motion models
and kinematic and dynamic constraints, including acceleration-
controlled agents, differential-drive agents, and smooth car-like
agents. The resulting paths are high quality and collision-free,
while needing only a few milliseconds of computation as part
of an integrated sense-plan-act navigation loop. For a video of
further results and reference code, please see the corresponding
webpage: http://motion.cs.umn.edu/r/NH-TTC/

I. Introduction

Recent trends in robotics, machine learning, and computer
graphics have significantly advanced the state-of-the-art in
autonomous navigation of mobile robots and intelligent agents,
often through improvements in high-quality, long-term plan-
ning. In many situations, an important task for the robot
is to immediately react to its local surroundings while still
making its best effort to follow its global, long-term plan.
Whether it is an autonomous car driving on a highway [25],
or a semi-autonomous smart-shelf navigating in an automated
warehouse [21], a robot should be able to observe its surround-
ings, anticipate the expected behavior of nearby obstacles, and
react accordingly, all within a tight sense-plan-act loop.

Broadly speaking, the problem of locally steering a robot in
a dynamic environment has seen two types of approaches. On
one hand, exact solutions have been proposed that faithfully
capture the robot’s motion model, but can be slow to compute
(typically hundreds of milliseconds or much more on com-
plex scenarios) [7, 26, 32]. On the other hand, approximate
solutions exist that compute new controls very fast (often in
well under a millisecond), but simplify or approximate the
dynamics of the problem which can lead to overly conservative
behavior [3, 6]. Fast and exact approaches primarily exist only
for special cases such as when planning for a holonomic,
velocity-controlled robot moving in an environment of fixed
velocity obstacles [13] or when moving amidst other holo-
nomic, velocity-controlled robots [51].

A similar problem to robots navigating among dynamic
obstacles is faced by humans when navigating in crowded en-

vironments. Recent analysis of human motion has shown that
humans anticipate collisions and react to each other’s expected
trajectories [40]. This analysis has lead to new pedestrian
simulation methods, such as [28] and [31]. However, these
methods are only directly applicable to holonomic, velocity-
controlled robots.

Contributions. Inspired by these approaches derived from
human data, we propose NH-TTC, short for non-holonomic
time to collision, a generalized approach for real-time naviga-
tion of mobile robots in complex, dynamic environments. NH-
TTC plans directly over the full control space of the robots
using the exact robot dynamics. This allows us to naturally
support planning over a wide variety of robot types with
various kinematic or dynamic constraints. We leverage two
gradient-based optimization techniques, implicit differentiation
and subgradient descent, to penalize only true collisions and
promote goal-oriented controls, even in the face of the dis-
continuities introduced by time-to-collision computation. To
enable fast planning as part of an iterative, anytime framework,
we consider single control trajectories allowing us to generate
high-quality trajectories in under a millisecond.

II. RelatedWork

Our NH-TTC method falls under the class of anticipatory
collision avoidance methods in which the robot predicts how
its neighborhood evolves over time and react accordingly.
Early anticipatory approaches include the dynamic window
approach [15], velocity obstacles (VO) [13], and inevitable
collision states [16, 41]. These techniques, especially VOs,
served as inspiration for many decentralized, multi-agent nav-
igation approaches, which often incorporate the notion of
reciprocity, where agents explicitly share the responsibility
for collision [50, 22]. The (reciprocal) VO concept has
been further extended to include reciprocal collision avoidance
between robots having more complicated dynamics [52, 44, 5],
multi-robot teams walking in formation [30, 27], and formu-
lations that account for uncertainty in the future trajectory of
obstacles through explicit error modeling [17, 49] or by using
deep-learning based approaches [33].

Anticipatory collision avoidance is also an important aspect
to how humans navigate [28, 40], and models of anticipation
have been key for socially-inspired navigation approaches that
seek to understand, replicate, or draw inspiration from human
collision-avoidance strategies [14, 11]. Recent work has shown
advantages of enabling more long term anticipatory planning
by using specialized, high level representations such using

http://motion.cs.umn.edu/r/NH-TTC/

braids theory to plan passing coordination [36] or by warping
paths to represent arcs over time [55].

A particularly popular approach for fast, anticipatory colli-
sion avoidance in multi-agent scenarios is the ORCA frame-
work from van den Berg et al. [51]. ORCA conservatively
approximates collision avoidance constraints on a robot’s
motion as half-planes in the space of velocities. The optimal
collision-free velocity can then be quickly found by solving
a convex optimization problem through linear programming.
ORCA-based navigation is fast to compute, and consistently
leads to collision-free navigation; however, it assumes the
robot can directly choose any velocity (i.e., no kinematic
motion constraints).

Several recent extensions to the velocity-based planning
approach have focused on enabling safe navigation of kinemat-
ically or dynamically constrained robots, such as robots with
differential-drive dynamics or robots with maximum acceler-
ation caps. For example, the Generalized Velocity Obstacles
(GVO) [53] uses random sampling in order to find kinemat-
ically feasible controls that get the robot closer to its goal.
Sampling-based strategies have proven to be slow, leading to
the rise of fast, specialized methods that propose geometric,
ORCA-like optimization for specific motion models including
approaches for steering differential-drives, car-like robots, and
other non-holonomic agents [18, 48, 2, 1].

More closely related to our work are very recent meth-
ods which have been proposed to extend the ORCA-like
approaches to very broad classes of robot motion models.
Generalized Reciprocal Velocity Obstacles (GRVO) treats
kinematically-constrained robots as if they were able to take
arbitrary velocities and uses an LQR controller to steer to robot
to reach the computed velocity [6]. Similarly, the Cooperative
Collision Avoidance (CCA) approach replaces each robot with
a virtual agent who has a dynamically enlarged extent [3],
this extra space gives kinematically-constrained robots the
breathing room to maneuver to their target velocities before
any collisions. Our proposed navigation approach supports
fast, realtime collision avoidance across the same wide range
of motion models as GRVO or CCA, but removes the need to
approximate robot motion models or collision computations.
Reducing this approximation error is especially important
for robots with highly constrained motion models, or those
navigating in particularly dense scenarios or in close quarters.

III. Notation and Assumptions

We assume our environment contains a single robot navi-
gating to a goal position pg while avoiding a set of obstacles
(multi-robots scenarios are discussed in Section VII). We
assume both the robot itself and the various obstacles in its
environment follow some known continuous time dynamics
functions that define evolution of the state of the robot x(t,u)
and the obstacles states O(t) = {oi(t), ∀i} as follows:

ẋ(t,u) = f (x(t,u),u) (1)
ȯi(t) = gi(oi(t)), (2)

where u ∈ U is a valid control input, and f , g are (possibly
non-linear) continuous-time equations of motion. The set U
encodes constraints on the robots dynamics, such as maximum
control limits. Likewise, we can define a collection of valid
states X that can be used to constrain any aspect of the robot’s
state such that x(t,u) ∈ X ,∀t. This is needed to specify state
constraints that are not directly part of a robot’s control (e.g.,
an acceleration-controlled robot with a maximum velocity).

To determine collisions between the robot and the obstacles,
we model them both as disks. These disks are defined by
projecting both the robot and obstacle states into a common
Euclidean workspace, typically 2d or 3d, and then finding the
minimal covering disk. As such, we define the robot’s position
as:

x̄(t,u) = p(x(t,u)), (3)

where p maps from state space to the Euclidean workspace.
The function p is chosen to place the center of the collision
disk with a radius rx so as to wrap the true shape of the robot
as closely as possible. As an example, for a car-like robot,
this will shift the center of the collision disk from the natural
dynamics point at the center of the rear axle to the center of
the car. Similarly, obstacle i’s position is defined as:

ōi(t) = qi(oi(t)) (4)

and roi be the center of the collision disk and its radius for
obstacle i at time t, respectively, where the function qi maps
the obstacle’s state space to the workspace.

IV. NH-TTC Problem Formulation

Our work considers the problem of a robot that must traverse
among moving obstacles while navigating to a goal position.
Here, we formulate the problem as one where the robot is
following a tight sense-plan-act loop many times a second.
As such, our approach is similar to classic “reactive” planning
approaches as the robot is given only a few milliseconds
to compute new controls each time step in response to its
immediate sensor input. Unlike many of these approaches, we
propose an anytime approach, meaning that it will quickly find
an acceptable solution (typically, in under a millisecond) and
iteratively refine the solution as time is available.

A. Optimization-based Formulation

Given the above setting, we can formally define the problem
as follows. We are given the robot’s current state, x(0), a set
of obstacle states over time, O(t) = {oi(t), ∀i}, and the robot’s
goal position, pgoal, which we assume is been computed by a
high-level planning approach. The task for the robot is to find
a collision-free trajectory, x(t) ∀t ≥ 0, that approaches the goal
as fast as possible while obeying the constraints of the robot
dynamics, ẋ(t,u) = f (x(t,u),u), the control constraint set, U,
and accounting for the state constraint set X.

We can formulate this task as a trajectory optimization prob-
lem as follows. Given an arbitrary trajectory T = {x(t), ∀t ≥ 0}
we construct a cost function C(T) which evaluates how well
the trajectory does at providing efficient, collision-free motion

Fig. 1: Gradient-Based Optimization in Control Space
(Left) A differential-drive robot, shown in red, has to reach
the ‘x’ mark while avoiding a non-reactive obstacle shown
in gray. (Right) The corresponding cost field of the robot is
visualized here by taking samples from the robot’s feasible
controls. To better show the gradient, values are plotted in
log scale with the color corresponding to log(C(u) + 1). The
optimal control (linear velocity = 0.3 m/s, rotational velocity
= 0.03 rad/s) steers towards the goal, while gently avoiding
any potential collisions.

towards the robot’s current goal. In contrast to other trajectory
optimization approaches, we treat collision constraints as an
additional cost based on the time to collision with obstacles.
As shown in [28], time to collision naturally balances soft
avoidance of (temporally) distant collisions with hard avoid-
ance of (urgent) nearby collisions. We can then represent our
cost function as two separate terms:

C(T) = Cgoal(T) + Ccol(T) (5)

where Cgoal(T) evaluates how quickly the trajectory ap-
proaches its goal state (or goal position), and Ccol(T) assigns
a penalty to trajectories which have a high risk of collision.
Given sufficient computation time, our goal would be to find
the complete trajectory which minimizes this cost function,
e.g., via sampling as in [10, 9, 45], or using a POMDP-like
formulation as in [42, 4]. However, these methods typically
take several seconds or longer to converge, so they are
inappropriate for the real-time setting considered here.

In order to allow the fast computation needed for use in a
tight reactive planning loop, we consider only trajectories that
are represented as a single, consistent, control u that is exe-
cuted indefinitely. This critical assumption greatly accelerates
the optimization process. As a result, we can reparameterize
our cost function in terms of a single control u. Formally, we
seek to find the control u that minimizes:

C(u) = Cgoal(u) + Ccol(u) (6)

such that u ∈ U and x(t,u) ∈ X ∀t ≥ 0 (see Figure 1).
In practice, a robot would not take the optimal fixed-control
trajectory indefinitely. Rather, it will re-run this optimization
many times a second updating its planned trajectory as it
approaches the goal and as local conditions change (as in a
receding horizon planner [12, 35, 54]).

B. NH-TTC Cost Function

While many different cost functions could be used in our
framework, we found that the sum of two simple cost functions
works well in a wide variety of scenarios:

a) Goal Cost (Cgoal): Because a fixed-control trajectory
has no end point, we evaluate the position of the robot at some
time tgoal into the future. The goal cost is then defined by how
close the center of the robot (Equation 3) will be to its goal
position at that time:

Cgoal(u) = κgoal

∥∥∥x̄(tgoal,u) − pg

∥∥∥ , (7)

where κgoal is a scaling constant.
b) Collision Cost (Ccol): Again, as our fixed-control

trajectory has no endpoint, we evaluate collisions only for the
next thoriz seconds. Inspired by recent findings that suggest the
urgency humans place on a collision follows an inverse power-
law relationship with how imminent the collision is [28], we
penalize trajectories with a term that is inversely proportional
to the time until the nearest collision:

Ccol(u) = max
oi∈O

κcol

τ(u, oi)
(8)

Here κcol is a scaling constant and τ(u, oi) computes the
minimum time to collision between the robot’s trajectory (as
determined by the control, the current robot position, and the
dynamics of the robot) and the expected future trajectory of
obstacle oi. The result of this human-inspired collision cost is
a natural balance between strongly avoiding urgent collisions
and (when necessary) taking controls that will lead to collision
in the far enough future, so that the robot will have a chance
to re-plan well before the collision happens.

An important property of our cost function is that it rises
to infinity as the time until the nearest collision approaches
zero. This means any control which leads to immediate
collisions has an effectively infinite penalty. As a result, in the
limit as planning frequency approaches infinity, our approach
is guaranteed to be collision-free so long as the optimizer
has sufficient time to converge to a finite cost (assuming a
collision-free control exists).

V. Control Optimization

While the above forms for the Cgoal and Ccol terms capture
their respective costs in a straightforward fashion, the resulting
cost function C is difficult to optimize as it is constrained,
non-convex, and non-continuous. Specifically, time to collision
has a sharp discontinuity between a glancing collision and no
collision, jumping from a finite value to infinity, respectively
(e.g., Figure 1). Due to these discontinuities, classical gradient
descent will be ineffective (as will higher order, gradient-
based optimization techniques). Smoothing this cost field (as
was done in [29]) is not possible as we do not, in general,
know a priori where the discontinuities will lie. We therefore
use subgradient descent-based optimization [46, 8] which will
allow us to find local minima even in the presence of a non-
continuous, non-smooth cost function.

A. Subgradient Descent

To optimize Equation 6 using subgradient descent, as in
standard gradient descent, the control u is iteratively updated
based on the gradient of the cost with respect to u:

uk+1 = uk − α sk, (9)

where the search direction, sk, is based on the gradient dC/du.
However, at points where C is not smooth, and therefore
dC/du is undefined, we choose either the left or right gradient.
This is known as the subgradient, which we will call gk. While
this gives us an optimization direction, it does not define the
stepsize α, i.e., how far to update our control in that direction.

Numerous techniques have been proposed to choose an
appropriate update size α. Experimentally, we found a Polyak
update-based approach [43] to perform well in our domain.
This method assumes the optimal possible control cost, c∗, is
known in advance. Then, at each descent iteration k, given the
current cost ck:

α = (ck − c∗)/‖sk‖
2 (10)

Given the complex, dynamic nature of our cost function, it is
generally not possible to know the optimal value c∗ in advance.
As such, we compute an approximate optimal cost ĉ∗ by first
taking the best cost seen in any of the iterations so far, c+,
and then interpolating it over iterations towards a conservative
estimate of the lowest possible cost in this state, clowest:

ĉ∗ = c+ +
10

10 + k
(clowest − c+). (11)

Here, we compute clowest by assuming the collision cost is zero
and approximate a lower bound of the total cost using only
the goal cost. The resulting update to α guarantees that the
subgradient decent will converge on a true local minimum as
k approaches infinity while still taking large updates when far
away from the optimal control (similar strategies can be found
in the subgradient optimization literature [47, 38]).

While it is possible to directly use the subgradient as the
search direction (i.e., sk = gk), we find convergence to be
improved by adding “momentum” to the search direction [39].
That is, our search direction at iteration k is based in part on
the current subgradient gk and in part on the previous search
direction, sk−1. Experimentally, we found the following update
rule to work well: sk = 1

10 sk−1 + 9
10 gk.

Subgradient descent does not guarantee a cost decrease at
each iteration, so the best control seen across the entire opti-
mization is used as our final result. Additionally, we project the
control computed at each iteration onto the control constraints,
U, to ensure the controls remain feasible. Furthermore, the
trajectory should respect the state constraints, X, and, if it
does not, we project u to the nearest control that respects
these constraints until at least the next planning cycle (see
Section V-C). The resulting projected subgradient descent
algorithm is shown in full in Algorithm 1. Here, we assume
that the robot is given a time budget, maxTime, to compute
its new control.

Algorithm 1: Subgradient-Based Control Optimization
Input : u0, U, clowest, maxTime
Output: u∗
k = 0
u∗ = uk = u0
c+ = ck = C(u0)
sk−1 = 0n×1
while elapsed time < maxTime do

gk = dC/du(uk)
sk = 1

10 sk−1 + 9
10 gk

ĉ∗k = c+ + (clowest − c+)10/(10 + k)
α = (ck − ĉ∗k)/‖sk‖

2

uk+1 = uk − α sk

Project uk+1 into U and X (see Section V-C)
ck+1 = C(uk+1)
Update c+ and u∗
k = k + 1

end

B. Subgradient Computation

Below, we first discuss how to compute the two terms
of the cost function, Cgoal and Ccol, and then focus on the
computation of the subgradient, gk = dC/du(uk). Note that
computing gk is not trivial for many dynamics models as there
may not be a closed form solution for the robot position, the
obstacle position, or the time to collision.

1) Cost Computation: To compute the goal cost, Cgoal

(Equation 7), we need to compute the position at tgoal. As
we may not have a closed form solution for x(tgoal,u), we
approximate it using fourth order Runge-Kutta integration
(RK4). To improve accuracy, we iteratively run multiple steps
of RK4, such that each step is, at most, some small time
horizon, dtmax. This parameter allows for tuning the accuracy
of our position estimation, at the expense of computation time.
Once x(tgoal,u) has been computed, we pass it through the
position mapping function p to obtain the Euclidean position,
x̄(tgoal,u), which, along with the goal position, fully defines
the goal cost.

To compute the collision cost, Ccol (Equation 8), we need
to compute the most imminent time to collision over all the
obstacles. Assuming both objects can be approximated by
disks, the time to collision between an agent x and object o
can be defined as the time at which the two disks touch, i.e.:

‖x̄(τ(u, o),u)) − ō(τ(u, o))‖2 − (rx + ro)2 = 0, (12)

where x̄ (Equation 3) and ō (Equation 4) return the agent
and obstacle collision centers respectively. However, for many
systems, solving this equation for τ is not feasible, as there
may not be a closed form solution for x̄ and/or ō, or the
resulting equation is too complex. Instead, we utilize a similar
approach to that used to compute the goal cost. We forward
propagate the state of the robot and the state of each obstacle
using RK4, and perform linear continuous collision checks
between the resulting states to estimate the first moment of

x0

x1 x2

x3

o0

o1

o2

o3

Fig. 2: Time to Collision Computation: Robot and obstacle
states are forward propagated using RK4 integration, and then
linear continuous collision checks are done between each
discrete state.

collision that may have occurred during the integration steps
(see Figure 2).

Knowing how to compute the (propagated) cost C, we next
show how to compute the gradient of first the goal cost and
then the collisions cost with respect to the controls u.

2) Goal Cost Gradient: As Cgoal (Equation 7) indirectly
relies on u, we must apply the chain rule to compute the
gradient:

dCgoal(u)
du

=
dCgoal(u)

dx̄(tgoal,u)
dx̄(tgoal,u)
dx(tgoal,u)

dx(tgoal,u)
du

(13)

The first term can be directly computed as:
dCgoal(u)

dx̄(tgoal,u)
=

κgoal

2
∥∥∥x̄(tgoal,u) − pg

∥∥∥ (14)

The second term, dx̄(tgoal,u)/dx(tgoal,u), can be computed
directly given the projection function p (this term will be 1 if
the robot’s control point is the center of the collision disk.

All that remains is to compute the third term, dx(tgoal,u)/du.
Given a discrete time dynamics function, this gradient can be
computed iteratively as:

dx(t + dt,u)
du

=
∂x(t + dt,u)

∂u
+
∂x(t + dt,u)
∂x(t,u)

dx(t,u)
du

(15)

which follows directly from the multivariate chain rule. We
start from dx(0,u)/du = 0, as the current position is in-
dependent of the upcoming control, and apply Equation 15
iteratively until the gradient at some user-defined time, T , is
obtained. However, we may not have a closed form solution
for x(t,u), and therefore no closed form solution for the
discrete time dynamics. We can approximate this gradient
using a series of trapezoidal integration steps on the (known)
continuous dynamics as follows:

x+ = x(t,u) + dt · ẋ(x(t,u),u)

x(t + dt,u) ≈ x(t,u) +
dt
2

(ẋ(x(t,u),u) + ẋ(x+,u))
(16)

Using these approximate dynamics, we can iteratively compute
the partial derivatives required by Equation 15 as:

∂x(t + dt,u)
∂u

≈
dt
2

(
∂ẋ(x(t,u),u)

∂u
+
∂ẋ(x+,u)

∂u
+
∂ẋ(x+,u)
∂x+

∂x+

∂u

)
(17)

Algorithm 2: Position Control Gradient
Input : u, x(0,u), T, dtmax

Output: x(T,u), dx(T,u)/du
t = 0
dx(t,u)

du
= 0

while t < T do
dt = min(dtmax,T − t)
x(t + dt,u) = RK4(x(t,u),u, dt)
dx(t + dt,u)

du
= Equation 15

t = t + dt
end

∂x(t + dt,u)
∂x(t,u)

≈ I +
dt
2

(∂ẋ(x(t,u),u)
∂x(t,u)

+
∂ẋ(x+,u)
∂x+

∂x+

∂x(t,u)

)
(18)

where the half step partial derivatives are computed as:

∂x+

∂u
= dt

∂ẋ(x(t,u),u)
∂u

(19)

∂x+

∂x(t,u)
= I + dt

∂ẋ(x(t,u))
∂x(t,u)

(20)

The full iterative process for computing the dx(T,u)/du at
time T is shown in Algorithm 2 (here, we set T = tgoal).
Finally, we combine the resulting gradient as in Equation 13
to compute the total gradient for the goal cost term.

3) Collision Cost Gradient: Similar to the goal cost term,
the collision cost term, Ccol (Equation 8), relies indirectly on
u, so we must again compute its gradient via the chain rule:

dCcol(u)
du

=
dCcol(u)
dτ(u, o∗)

dτ(u, o∗)
du

(21)

where o∗ is the obstacle with the closest time-to-collision.
However, unlike in the goal cost gradient, the time to

collision, τ, cannot generally be written explicitly as a func-
tion of the controls u, which prevents us from computing
dτ(u, o∗)/du. To address this issue, we propose the use of
implicit differentiation. This allows us to have an analytic
expression of the gradient implicitly written as a function of
τ(u, o∗). The implicit relationship between τ and u is shown in
Equation 12. Using this relationship, we can find dτ(u, o∗)/du
by taking the derivative of Equation 12 with respect to u j (the
jth element of the control), and solving for dτ(u, o∗)/du j:

dτ(u, o∗)
du j

= −

(x̄ − ō∗)T (
dx̄
du j

)

(x̄ − ō∗)T (
dx̄
dτ
−

dō∗

dτ
)

(22)

where x̄ = x̄(τ(u, o∗),u)) and ō∗ = ō∗(τ(u, o∗)).
Note that dx̄/dτ and dō∗/dτ are the known continuous time

dynamics of the robot and the obstacle, and dx̄/du j can be
computed via the chain rule as:

dx̄
du j

=
dx̄
dx

dx
du j

(23)

where dx̄/dx is dependent on the dynamics model, and dx/du j

can be computed with Algorithm 2, setting T = τ(u, oi). If τ
is infinite (i.e. there is no collision), this derivative is 0.

C. State Constraints

While collisions are handled through the cost term Ccol,
other state constraints (such as maximum velocities) are
handled as true constraints. For these constraints, a small
modification needs to be applied to NH-TTC. Since we are
generating trajectories with a single control, it is not always
possible to guarantee that such constraints will be satisfied
for the entire trajectory. For example, applying a non-zero
acceleration will eventually violate any velocity magnitude
constraint. To address this issue, we only allow controls that
will not violate the state constraints within the next timestep.
For example, in each iteration of subgradient descent, we
project the control of an acceleration controlled robot as
follows:

upro j =

a if ‖v + a dt‖ ≤ vmax
v∗ − v

dt
, otherwise

(24)

where v∗ is v + a dt projected onto vmax. This ensures the
control upro j will not violate the state constraints within the
next timestep.

In addition to enforcing the state constraints for the next
timestep, we must additionally account for these constraints
in predictions of our future states, such as in the collision
search. We do this by modifying the continuous dynamics to
forbid exceeding the state constraints. In the above example,
we would modify the continuous dynamics of an acceleration
controlled robot as follows:

v̇ =


a

100
, if ‖v‖ > vmax and aT v > 0

a, otherwise
(25)

While it may be natural to zero out the acceleration if the
constraint is violated, this could result in the gradient of the
velocity with respect to acceleration going to zero as well, and
no optimization would occur. Instead, we limit the acceleration
to a very small value to avoid the vanishing gradient problem.
Note that our above approach is only applicable when the
state constraints can be expressed as a convex constraint on
the control.

D. Implementation Details

In our experiments, the cost parameters, κgoal and κcol, are
both set to 1. For the time-to-collision search, thoriz is set to
5 s and dtmax is set to 0.1 s. The goal distance time, tgoal, is set
to 1 s. Trajectories are planned using 10 ms of planning time,
and controls are updated at 10 Hz. All results are generated on
a single thread on an Intel Xeon 3.0GHz CPU (for physical
robots, each robot planned in its own thread). We implemented
our subgradient-based optimization framework in C++ using
Eigen [20] to efficiently handle matrix and vector operations.

The exact terms of the cost gradient computation (Equations
13-22) will vary based on the dynamics of the robot under

Optimization Time
Dynamics 1 ms 5 ms 10 ms

V 99.7% (5.9) 99.9% (2.0) 99.9% (3.2)
A 99.7% (5.3) 99.9% (2.6) 99.9% (2.6)

DD 99.5% (7.3) 99.5% (6.7) 99.6% (6.1)
Car 99.0% (9.7) 99.5% (6.8) 99.6% (6.4)

TABLE I: Percent of Collision-Free Frames: The aver-
age percent and variance (reported in percentage points) of
collision-free frames is shown for the scenario in Figure 3(a-c)
for various dynamics models. Experiments were run for 1000
frames, and averaged over 1000 runs per dynamics model.

consideration. Given the equations of motion, these derivatives
can be computed analytically. While our framework supports
many robot dynamics models, our results primarily consider
four motion dynamics: (V) a robot that can directly control
its x- and y-velocities, (A) an acceleration-controlled robot,
(DD) a robot that that has differential drive kinematics, and
(Car) a robot which has car-like kinematics. This collection
includes span a range of 1st and 2nd order dynamics, with or
without kinematic constraints, and includes both holonomic
and non-holonomic systems. Importantly, including 2nd order
dynamics models allows our method to explicitly enforce the
smoothness of the planned trajectories.

For all of these motion models, we impose a constraint
on the maximum linear velocity of the robot. Additionally,
the acceleration model caps the maximum acceleration, the
differential-drive and car-like models both cap the maximum
angular velocity, and the car-like model has a maximum
steering angle. In all of our experiments, unless otherwise
specified, we use the following constraints: 0.3 m/s for linear
velocity, 1.0 rad/s for angular velocity, 1.0 m/s2 for linear
acceleration, π rad/s2 for angular acceleration, and π/4 rad for
steering angle.

VI. Single-Agent Collision Avoidance

A key application of anticipatory collision avoidance is
to allow a robot to avoid nearby dynamic obstacles as it
moves to its goal. Our method supports high-quality, collision-
free navigation for various dynamics models on many such
scenarios.

A. Random Agents Scenario

To test the collision avoidance performance in a challenging
scenario, we tasked a simulated robot to navigate to randomly
generated goals while using NH-TTC to avoid 40 simulta-
neously moving, non-reactive linear velocity obstacles in a
densely packed scenario (Figure 3(a-c)). This scenario is very
challenging as obstacles occasionally “box-in” the robot, and
create scenarios in which collisions are unavoidable. Note, this
extreme scenario is the only scenario we tested for which there
are any collisions with our method.

Table I shows how our method performs with different agent
dynamics models. In general, increasing the complexity of the
dynamics model increases the average number of colliding
frames. Overall though, even in such a challenging setting

(a) t = 8.5 s (b) t = 13.2 s (c) t = 26.0 s (d) t = 6.0 s (e) t = 14.1 s (f) t = 28.0 s

Fig. 3: Smooth Differential Drive Robot Among Random Obstacles: The cyan robot moves to a random goal position,
indicated by the colored x, while avoiding a number of grey dynamic obstacles. The recent trajectories traced by the robot and
the obstacles are displayed with solid lines. (a-c) The obstacles follow known linear paths. (d-f) The obstacles follow unknown
sinusoidal paths, where the robot is only given the current linear and angular velocities of each obstacle.

(a) No Reciprocity

(b) With Reciprocity (c) 5-Agent Circle

0 5 10 15 20
Planning Time (ms)

7.2

7.4

7.6

7.8

8

8.2

8.4

A
ve

ra
ge

 T
as

k
C

om
pl

et
io

n
T

im
e

(s
)

ORCA (V)
TTC (V)
NHTTC (V)

(d) Performance Comparison

0 5 10 15 20
Planning Time (ms)

7

7.5

8

8.5

9

A
ve

ra
ge

 T
as

k
C

om
pl

et
io

n
T

im
e

(s
)

NH-ORCA (DD)
NHTTC (V)
NHTTC (A)
NHTTC (DD)
NHTTC (Car)

(e) Convergence Comparison

Fig. 4: (a-b) Reciprocity: Two velocity-controlled agents swap positions. In (a), reciprocity is disabled and each agent takes
full responsibility to resolve the collision. In (b), reciprocity is enabled. This shows the smoothing effect reciprocity has on the
resulting trajectories. (c) 5-Agent Circle: Each of the agents attempts to move to its antipodal position on a circle. The dark
blue agent is velocity controlled, the green agent is acceleration controlled, the red agent is differential drive controlled, the
light blue agent is smooth differential drive controlled, and the yellow agent is a simple car. (d-e) Performance Comparisons:
Task completion time for homogeneous agents in the 5-Agent Circle who all share the same dynamics model. NH-TTC is able
to outperform ORCA, TTC, and NH-ORCA on average, even with more restrictive motion models. Results averaged over 100
runs.

that is unlikely to happen in real life, collisions are very rare,
typically occurring in less than 0.5% of frames. For nearly
all of the dynamics models, increasing the optimization time
both reduces the average number of colliding frames and the
variance in the number of colliding frames. Though most of
the cost improvement occurs within the first 5 ms.

We also tested the performance of our method in a variant
of the above scenario, where now the future trajectories of the
obstacles are unknown, and the robot makes predictions based
only on the current actions of each obstacle. Figure 3(d-f)
shows results with a smooth differential drive robot avoiding
differential drive obstacle following randomized sinusoidal
paths. Again, the robot is able to smoothly avoid all obstacles
while progressing through multiple goals.

B. Additional Scenarios and Results

Additional scenarios are shown in the supplemental video.
These results include additional dynamics models such as an
acceleration-controlled version of both the differential drive
dynamics and the car-like dynamics. Similarly, we also show
results from changing various control constraints.

VII. Multi-Agent NH-TTC

Directly optimizing the cost function in Equation 6 is not the
correct behavior to take when the obstacles are also actively
avoiding collisions with the robot (e.g., the obstacles are other
robots). In these scenarios, avoiding the full collision at every
time step can result in oscillatory behavior. This is due the fact
that each agent tries to resolve the collision by itself without
accounting for the fact that the other agent, by symmetry, is
facing the exact same condition. This will lead to a pattern
of robots alternatively over- and then under-correcting for
collisions, which results in jerky motion (see Figure 4a).

We can address this issue through allowing reciprocity
between the two agents, where they share the effort of averting
mutual collisions [50]. Inspired by the approach taken by
ORCA (only avoiding half the collision), we only update the
control to halfway between the new optimal control and the
previous control. This modification results in smoother paths,
while still fully avoiding collisions (see Figure 4b). Even if the
obstacle is not actual reacting to avoid the robot, the robot still
converges to a collision-free control after a few time steps.

A. Heterogeneous Circle

To highlight how our approach can handle interactions be-
tween heterogeneous agents, i.e. agents that can have different
motion models and state spaces, we consider a scenario with
five agents, each with a different robot model. In this scenario,
each of the five agents are simultaneously planning in a
decentralized manner as they attempt to move to antipodal
points on a circle. Figure 4c shows the paths taken by each
agent. As can also be observed in the supplementary video,
NH-TTC generates controls that lead to collision-free and
smooth paths. Note that the jitter in the initial portion of the
velocity-controlled agent comes from the implicit coordination
between the agents. After the first few seconds, once the agents
have come to an implicit consensus on the paths to take, the
paths are smooth for the rest of execution.

B. Comparison to Other Techniques

To empirically analyze the efficiency of the paths generated
by NH-TTC, we compare its performance in a 5-agent circle
scenario to TTC [28], ORCA [51], and NH-ORCA [1] as
implemented by Hennes et al. [23]. This scenario is set up
similar to that in Figure 4c, but with homogeneous mod-
els. Both ORCA and TTC are typically deterministic, but
we observed ORCA agents frequently deadlocking in nearly
symmetric scenarios. To alleviate this shortcoming, we add a
small amount of noise to the goal velocity at each timestep
of ORCA. This noise amount, ±0.1m/s, was chosen as the
smallest amount of noise that resulted in a 100% success rate.
Even with very small optimization times (less than 1 ms),
NH-TTC is able to outperform ORCA and TTC in the velocity
scenario (see Figure 4d). NH-TTC is also able to perform well
compared to NH-ORCA in a differential drive scenario.

We also compare NH-TTC perfomance across different
motion models. Note that standard TTC and ORCA only
support velocity controlled models, while NH-ORCA only
supports differential drive models. Other techniques (such
as [3] and [48]) have extended ORCA to non-velocity motion
models. However, all of these techniques rely on increasing the
collision radius of the robot to account for changing the motion
model. This radius increase will shrink the feasible control
space, frequently resulting in longer paths. In comparison, NH-
TTC is able to achieve similar performance as in the velocity
controlled-case accross other first order models (DD and
Car, see Figure 4e). Even with a second order, acceleration-
controlled model (A), NH-TTC is able to plan efficient paths
that outperform the holonomic models mentioned above. Note
that even for very small (sub-millisecond) optimization times,
our planned trajectories are still collision free.

C. Execution on Physical Robots

To test the applicability of our method to real robots, we
implemented our framework on three Turtlebot2 robots (a
differential drive system). We used an OptiTrack system for
position and orientation localization, and used the internal
odometry of the robots to get the linear and angular velocities.
Each robot communicated its current pose and velocity to

(a) Following

0 5 10 15 20
0

0.1

0.2

0.3

L
in

.
V

e
l.
 (

m
/s

)

0 5 10 15 20

Time (s)

-0.5

0

0.5

R
o

t.
 V

e
l.
 (

ra
d

/s
)

(b) Robot Controls

Fig. 5: Physical Robots - Following Scenario: One robot
attempts to slip between two unresponsive robots (a simulated
version is shown in Figure 8). In (b), the controls executed by
the controlled robot are shown, as measured by wheel encoders
and gyroscope. The robot is able to quickly accelerate and
slide between the two agents as soon as an appropriate gap
opens up.

the other robots, and asynchronously planned over the latest
received state of the world.

We tested the applicability of our approach to physical
robots on two scenarios:
• “Car” Following: Two non-reactive robots moving at a

constant velocity of 0.2 and 0.15 m/s, respectively, with
a single controlled robot having a maximum velocity of
0.3 m/s. As in the simulated version of this case, we check
the goal distance at multiple temporal points in the future
to reduce oscillatory behavior.

• 3-Robot Circle: Three robots simultaneously try to move
to antipodal points on a circle.

In all of our physical robot experiments, we left the maximum
linear velocity at 0.3 m/s, but reduced the maximum rotational
velocity to be 0.5 rad/s in order to match the actual limits
of the robots used in the experiments. Results from these
experiments can be seen in the companion video (Extension
1).

To further study the quality of the generated trajectories, we
plotted the controls taken by the robot over time, as measured
by its wheel encoders and gyroscope, in Figures 5 and 6.
While there is some inherent noise in the measured controls,
the robots were able to smoothly achieve their goals without
colliding, taking admissible controls that stayed within the

(a) 3-Robot Circle

0 5 10 15
0

0.1

0.2

0.3

L
in

.
V

e
l.
 (

m
/s

)

Robot 1

Robot 2

Robot 3

0 5 10 15

Time (s)

-0.5

0

0.5

R
o

t.
 V

e
l.
 (

ra
d

/s
)

(b) Robots’ Controls

Fig. 6: Physical Robots - 3-Robot Circle: Three robots avoid
each other while moving to antipodal positions on a circle.
The controls executed by each robot, as measured by wheel
encoders and gyroscope, are shown in (b), illustrating the
ability of the differential drives to smoothly adapt their linear
and angular velocities to resolve impending collisions.

given limits in all scenarios tested.

In the car-following scenario, while in motion, the average
linear acceleration of the controlled robot was 0.008 m/s2

and its average rotational acceleration was 0.002 rad/s2. In
the first 8 s, the robot gradually adapts its linear and angular
speed to smoothly slip between the two obstacles. Then, in
the next 7 s, it starts decelerating in order to align itself with
the speed and orientation of the leader obstacle, after which
it maintains an almost zero linear and angular acceleration.

In the 3-robot circle scenario, averaged across the times
when the three differential drive robots were moving, the
average linear acceleration was 0.008 m/s2 and the average
rotational acceleration was 0.011 rad/s2. Here, the robots are
able to quickly resolve the collisions within the first 5 s, and
then smoothly adapt their orientations and accelerate to reach
their goals. It is worth noting that the quick rotational velocity
changes that the robots exhibit during the first 4 s is due to
the symmetric nature of the scenario; the robots are on track
to arrive in the center of the environment nearly at the same
time, and attempt to break the symmetry by trying to implicitly
agree on whether to perform clockwise or counter clockwise
avoidance maneuvers.

VIII. Conclusion

In this paper we have proposed NH-TTC, a new gener-
alizable framework for anticipatory collision avoidance. Our
method is able to optimize directly in the control space of the
robot in an anytime fashion, allowing collision-free trajectories
to be computed over very short planning times for a wide
variety of robot motion models. To do so, we cast local
navigation as a control optimization problem and employ
an anticipatory cost function that focuses on the expected
future values of robot controls. As such a function is non-
convex and suffers from discontinuities, we minimize it using
subgradient descent, and use implicit differentiation to capture
the dynamics of future collisions for arbitrary motion models.

Limitations: While our approach performs well in many
scenarios, there are some navigation tasks it does not address
well. Since we optimize over single control trajectories, we
are unable to operate on any unstable systems (such as a
humanoid robot) where a single control cannot be taken over
long horizons. In addition, greedily optimizing goal distance
at each planning cycle limits the maneuvers we can generate.
However, this difficulty could be alleviated through a more
complex goal distance function that evaluates the resulting tra-
jectory quality holistically, rather than measuring the distance
to the goal at a single point in time.

Future Work: We are excited to test the application of NH-
TTC to other mobile robot types, especially those having 3D
dynamics such as quadrotors. In the future, we would also
like to extend NH-TTC to account for motion and sensing
uncertainty in the future trajectories of obstacles. Prior work
on uncertainty-aware local navigation [24, 14] can provide
some interesting ideas in this direction. Furthermore, we would
like to relax some of the assumptions that our framework
makes, such as that the robot and obstacles will maintain a
constant control input over a finite time horizon. Integrating
our method with obstacle prediction techniques [37, 19] could
result in better trajectories in crowded settings. Finally, as we
currently fit a single collision disk around each robot which
can underestimate the true time-to-collision value, we would
like to better approximate the robots using, e.g., the medial
axis transform [34].

Acknowledgments

This work was supported in part by the National Science
Foundation under Grants IIS-1748541 and CNS-1544887.

References

[1] Javier Alonso-Mora, Andreas Breitenmoser, Paul Beards-
ley, and Roland Siegwart. Reciprocal collision avoidance
for multiple car-like robots. In IEEE International
Conference on Robotics and Automation, pages 360–366,
2012.

[2] Javier Alonso-Mora, Andreas Breitenmoser, Martin Ru-
fli, Paul Beardsley, and Roland Siegwart. Optimal re-
ciprocal collision avoidance for multiple non-holonomic
robots. In Distributed Autonomous Robotic Systems,
pages 203–216. Springer, 2013.

[3] Javier Alonso-Mora, Paul Beardsley, and Roland Sieg-
wart. Cooperative collision avoidance for nonholonomic
robots. IEEE Transactions on Robotics, 34(2):404–420,
2018.

[4] Christopher Amato, George Konidaris, Ariel Anders,
Gabriel Cruz, Jonathan P How, and Leslie P Kaelbling.
Policy search for multi-robot coordination under uncer-
tainty. The International Journal of Robotics Research,
35(14):1760–1778, 2016.

[5] Daman Bareiss and Jur van den Berg. Reciprocal
collision avoidance for robots with linear dynamics using
LQR-obstacles. In IEEE International Conference on
Robotics and Automation, pages 3847–3853, 2013.

[6] Daman Bareiss and Jur van den Berg. Generalized
reciprocal collision avoidance. The International Journal
of Robotics Research, 34(12):1501–1514, 2015.

[7] Kostas E Bekris and Lydia E Kavraki. Greedy but
safe replanning under kinodynamic constraints. In IEEE
International Conference on Robotics and Automation,
pages 704–710, 2007.

[8] Dimitri P Bertsekas. Nonlinear programming. Athena
scientific Belmont, 1999.

[9] J. Denny, M. Morales, S. Rodriguez, and N. M. Amato.
Adapting rrt growth for heterogeneous environments. In
2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1772–1778, 2013.

[10] Andrew Dobson, Kiril Solovey, Rahul Shome, Dan
Halperin, and Kostas E Bekris. Scalable asymptotically-
optimal multi-robot motion planning. In 2017 interna-
tional symposium on multi-robot and multi-agent systems
(MRS), pages 120–127. IEEE, 2017.

[11] Teófilo Dutra, Ricardo Marques, Joaquim B. Cavalcante-
Neto, Creto Augusto Vidal, and Julien Pettré. Gradient-
based steering for vision-based crowd simulation algo-
rithms. Computer Graphics Forum, 36(2), 2017.

[12] Paolo Falcone, Francesco Borrelli, Jahan Asgari,
Hongtei Eric Tseng, and Davor Hrovat. Predictive active
steering control for autonomous vehicle systems. IEEE
Transactions on Control Systems Technology, 15(3):566–
580, 2007.

[13] Paolo Fiorini and Zvi Shiller. Motion planning in
dynamic environments using velocity obstacles. Interna-
tional Journal of Robotics Research, 17:760–772, 1998.

[14] Zahra Forootaninia, Ioannis Karamouzas, and Rahul
Narain. Uncertainty models for TTC-based collision
avoidance. In Robotics: Science and Systems, 2017.

[15] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The
dynamic window approach to collision avoidance. IEEE
Robotics & Automation Magazine, 4(1):23–33, 1997.

[16] Thierry Fraichard and Hajime Asama. Inevitable col-
lision states - A step towards safer robots? Advanced
Robotics, 18(10):1001–1024, 2004.

[17] Chiara Fulgenzi, Anne Spalanzani, and Christian Laugier.
Dynamic obstacle avoidance in uncertain environment
combining PVOs and occupancy grid. In IEEE Inter-
national Conference on Robotics and Automation, pages

1610–1616, 2007.
[18] Andrew Giese, Daniel Latypov, and Nancy M Amato.

Reciprocally-rotating velocity obstacles. In IEEE Inter-
national Conference on Robotics and Automation, 2014.

[19] Julio Godoy, Ioannis Karamouzas, Stephen J Guy, and
Maria L Gini. Moving in a crowd: Safe and efficient
navigation among heterogeneous agents. In IJCAI, pages
294–300, 2016.

[20] Gaël Guennebaud, Benoı̂t Jacob, and Others. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[21] Eric Guizzo. Three engineers, hundreds of robots, one
warehouse. IEEE spectrum, 45(7):26–34, 2008.

[22] Stephen J Guy, Jatin Chhugani, Changkyu Kim, Nadathur
Satish, Ming Lin, Dinesh Manocha, and Pradeep Dubey.
Clearpath: highly parallel collision avoidance for multi-
agent simulation. In ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 177–187,
2009.

[23] Daniel Hennes, Daniel Claes, Wim Meeussen, and Karl
Tuyls. Multi-robot collision avoidance with localization
uncertainty. In AAMAS, pages 147–154, 2012.

[24] Daniel Hennes, Daniel Claes, Wim Meeussen, and Karl
Tuyls. Multi-robot collision avoidance with localization
uncertainty. In International Conference on Autonomous
Agents and Multiagent Systems - Volume 1, pages 147–
154. International Foundation for Autonomous Agents
and Multiagent Systems, 2012.

[25] Thomas M Howard, Colin J Green, Alonzo Kelly, and
Dave Ferguson. State space sampling of feasible motions
for high-performance mobile robot navigation in complex
environments. Journal of Field Robotics, 25(6-7):325–
345, 2008.

[26] Sertac Karaman and Emilio Frazzoli. Sampling-based al-
gorithms for optimal motion planning. The international
journal of robotics research, 30(7):846–894, 2011.

[27] Ioannis Karamouzas and Stephen J. Guy. Prioritized
group navigation with formation velocity obstacles. In
IEEE International Conference on Robotics and Automa-
tion, pages 5983–5989, 2015.

[28] Ioannis Karamouzas, Brian Skinner, and Stephen J. Guy.
Universal power law governing pedestrian interactions.
Physical Review Letters, 113:238701, 2014.

[29] Ioannis Karamouzas, Nick Sohre, Rahul Narain, and
Stephen J. Guy. Implicit crowds: Optimization integrator
for robust crowd simulation. ACM Trans. Graph., 36(4):
136:1–136:13, July 2017. ISSN 0730-0301.

[30] Andrew Kimmel, Andrew Dobson, and Kostas Bekris.
Maintaining team coherence under the velocity obstacle
framework. In International Conference on Autonomous
Agents and Multiagent Systems - Volume 1, pages 247–
256, 2012.

[31] Ross A Knepper and Daniela Rus. Pedestrian-inspired
sampling-based multi-robot collision avoidance. In 2012
IEEE RO-MAN: The 21st IEEE International Symposium
on Robot and Human Interactive Communication, pages
94–100. IEEE, 2012.

[32] Yanbo Li, Zakary Littlefield, and Kostas E. Bekris.
Asymptotically optimal sampling-based kinodynamic
planning. The International Journal of Robotics Re-
search, 35(5):528–564, 2016.

[33] Pinxin Long, Wenxi Liu, and Jia Pan. Deep-learned
collision avoidance policy for distributed multiagent nav-
igation. Robotics and Automation Letters, 2(2):656–663,
2017.

[34] Yuexin Ma, Dinesh Manocha, and Wenping Wang. Ef-
ficient reciprocal collision avoidance between hetero-
geneous agents using ctmat. In Proceedings of the
17th International Conference on Autonomous Agents
and MultiAgent Systems, pages 1044–1052. International
Foundation for Autonomous Agents and Multiagent Sys-
tems, 2018.

[35] Jacob Mattingley, Yang Wang, and Stephen Boyd. Re-
ceding horizon control. IEEE Control Systems, 31(3):
52–65, 2011.

[36] Christoforos I Mavrogiannis and Ross A Knepper. Multi-
agent path topology in support of socially competent nav-
igation planning. The International Journal of Robotics
Research, 2018.

[37] Christoforos I Mavrogiannis and Ross A Knepper. Multi-
agent trajectory prediction and generation with topo-
logical invariants enforced by hamiltonian dynamics.
In Proceedings of the International Workshop on the
Algorithmic Foundations of Robotics, 2018.

[38] Angelia Nedic and Dimitri P Bertsekas. Incremental
subgradient methods for nondifferentiable optimization.
SIAM Journal on Optimization, 12(1):109–138, 2001.

[39] Yurii Nesterov. Introductory lectures on convex optimiza-
tion: A basic course, volume 87. Springer, 2003.

[40] Anne-Hélène Olivier, Antoine Marin, Armel Crétual, and
Julien Pettré. Minimal predicted distance: A common
metric for collision avoidance during pairwise interac-
tions between walkers. Gait Posture, 36(3):399–404,
2012.

[41] Stéphane Petti and Thierry Fraichard. Safe motion
planning in dynamic environments. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pages 2210–2215, 2005.

[42] Robert Platt, Russ Tedrake, Leslie Pack Kaelbling, and
Tomás Lozano-Pérez. Belief space planning assuming
maximum likelihood observations. In Robotics: Science
and Systems, 2010.

[43] Boris T Polyak. Introduction to optimization. translations
series in mathematics and engineering. Optimization
Software, 1987.

[44] Martin Rufli, Javier Alonso-Mora, and Roland Siegwart.
Reciprocal collision avoidance with motion continuity
constraints. IEEE Transactions on Robotics, 29(4):899–
912, 2013.

[45] Edward Schmerling, Lucas Janson, and Marco Pavone.
Optimal sampling-based motion planning under differen-
tial constraints: the drift case with linear affine dynamics.
In 2015 54th IEEE Conference on Decision and Control

(CDC), pages 2574–2581. IEEE, 2015.
[46] Naum Zuselevich Shor. Minimization methods for non-

differentiable functions. In Springer Series in Computa-
tional Mathematics. Springer, 1985.

[47] NZ Shor. Nondifferentiable Optimization and Polynomial
Problems, volume 24. Springer Science & Business
Media, 1998.

[48] Jamie Snape, Jur van den Berg, Stephen J Guy, and
Dinesh Manocha. Smooth and collision-free navigation
for multiple robots under differential-drive constraints. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 4584–4589, 2010.

[49] Jamie Snape, Jur van den Berg, Stephen J. Guy, and
D. Manocha. The hybrid reciprocal velocity obstacle.
IEEE Transactions on Robotics, 27(4):696–706, Aug
2011.

[50] Jur van den Berg, Ming Lin, and Dinesh Manocha. Re-
ciprocal velocity obstacles for real-time multi-agent nav-
igation. In IEEE International Conference on Robotics
and Automation, pages 1928–1935, 2008.

[51] Jur van den Berg, Stephen J. Guy, Ming Lin, and
Dinesh Manocha. Reciprocal n-body collision avoidance.
In Robotics Research: The 14th International Sympo-
sium ISRR, volume 70 of Springer Tracts in Advanced
Robotics, pages 3–19. Springer, 2011.

[52] Jur van den Berg, Jamie Snape, Stephen J Guy, and
Dinesh Manocha. Reciprocal collision avoidance with
acceleration-velocity obstacles. In IEEE International
Conference on Robotics and Automation, pages 3475–
3482, 2011.

[53] David Wilkie, Jur van den Berg, and Dinesh Manocha.
Generalized Velocity Obstacles. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
pages 5573–5578, 2009.

[54] Grady Williams, Nolan Wagener, Brian Goldfain, Paul
Drews, James M Rehg, Byron Boots, and Evangelos A
Theodorou. Information theoretic MPC for model-based
reinforcement learning. In IEEE International Confer-
ence on Robotics and Automation, 2017.

[55] David Wolinski and Ming C Lin. Generalized warpdriver:
Unified collision avoidance for multi-robot systems in
arbitrarily complex environments. In Robotics: Science
and Systems, 2018.

(x,y)

θ
v

φ

x(t)

(x̄,ȳ)

rx

Fig. 7: Smooth Car: Definitions of the states of the smooth car
(x, y, θ, v, φ), in addition to the collision disk (x̄, ȳ, rx). Given
zero controls, the car will follow the trajectory labeled x(t).

Appendix

We present four appendices to our paper. Appendix A
provides a detailed case study overviewing how the NH-TTC
framework can be applied to a the complex case of a vehicle
with smooth car-like dynamics with rear-wheel (off-center)
dynamics. Appendix B discusses how to apply NH-TTC to
scenarios with dynamic goals. Appendix C gives a detailed
comparison to ORCA [51] in a constrained scenario. Appendix
D analyzes the performance of the optimization approach
underlying our implementation.

A. Case Study: Smooth Car

We define a smooth car by a 5d state space in which each
state is represented by 2d position, orientation, linear velocity,
and steering angle as x = (x, y, θ, v, φ). Figure 7 shows the
relationships between these states. To make the velocity and
the steering angle of the car vary continuously over time,
we define a 2d control u = (a, ψ) that represents the car’s
linear acceleration and the rate of change of the steering
angle. In addition to constraints on a and ψ, we also impose
state constraints on v and φ. As described in section V-C,
we introduce the following functions to help enforce the state
constraints:

ka(v, a) =

1 if |v| > vmax and a · v > 0
1

100 otherwise

kψ(φ, ψ) =

1 if |φ| > φmax and ψ · φ > 0
1

100 otherwise

(26)

Using these functions, we can define the continuous time
dynamics of the system as:

ẋ = v cos(θ) ẏ = v sin(θ) θ̇ = v tan(φ)/L
v̇ = ka(v, a) a φ̇ = kψ(φ, ψ) ψ

(27)

where L is the length of the car. Note that v̇ and φ̇ are modified
to maintain the velocity and steering angle constraints during
forward propagation.

From these dynamics, we can compute the partial deriva-
tives with respect to both the state and the controls (only
non-zero derivatives are shown). The partial derivatives with

respect to the state are:
∂ẋ
∂θ

= −v sin(θ)
∂ẋ
∂v

= cos(θ)

∂ẏ
∂θ

= v cos(θ)
∂ẏ
∂v

= sin(θ)

∂θ̇

∂v
= tan(φ)/L

∂θ̇

∂φ
= v/(L cos2(φ))

(28)

and the partial derivatives with respect to the controls are:

∂v̇
∂a

= ka(v, a)
∂φ̇

∂ψ
= kψ(φ, ψ) (29)

Using the continuous time dynamics and these partial
derivatives, we can compute discrete time dynamics via trape-
zoid integration, and find the partial derivatives necessary for
Algorithm 2. The discrete time dynamics are approximated as:

xt+dt ≈ xt +
dt
2

(vt cos(θt) + vt+dt cos(θt+dt))

yt+dt ≈ xt +
dt
2

(vt sin(θt) + vt+dt sin(θt+dt))

θt+dt ≈ θt +
dt
2L

(vt tan(φt) + vt+dt tan(φt+dt))

vt+dt ≈ vt + dt a ka(vt, a)
φt+dt ≈ φt + dt ψ kψ(φt, ψ)

(30)

Using this dynamics function, we can analytically compute
the form of the partial derivatives with respect to the state
at time t and the controls, as required by Equation 15 (again
only showing non-zero elements). First, the partials of the x-
component of the state with respect to the controls are:

∂xt+dt

∂xt
= 1

∂xt+dt

∂θt
= −

dt
2

(vt sin(θt) + vt+1 sin(θt+1))

∂xt+dt

∂vt
=

dt
2

(cos(θt) + cos(θt+1) − vt+1 sin(θt+1)
∂θt+1

∂vt
)

∂xt+dt

∂φt
= −

dt
2

vt+1 sin(θt+1)
∂θt+1

∂φt

∂xt+dt

∂a
=

dt
2

(dt cos(θt+dt) − vt+1 sin(θt+1)
∂θt+1

∂a
)

∂xt+dt

∂ψ
= −

dt
2

vt+1 sin(θt+dt)
∂θt+1

∂ψ

(31)

Similarly, the partials of the y-component of the state are:
∂yt+dt

∂xt
= 1

∂yt+dt

∂θt
=

dt
2

(vt cos(θt) + vt+1 cos(θt+1))

∂yt+dt

∂vt
=

dt
2

(sin(θt) + sin(θt+1) + vt+1 cos(θt+1)
∂θt+1

∂vt
)

∂yt+dt

∂φt
=

dt
2

vt+1 cos(θt+1)
∂θt+1

∂φt

∂yt+dt

∂a
=

dt
2

(dt sin(θt+dt) + vt+1 cos(θt+1)
∂θt+1

∂a
)

∂yt+dt

∂ψ
=

dt
2

vt+1 cos(θt+dt)
∂θt+1

∂ψ

(32)

The partials of the orientation θt+1 are:

∂θt+1

∂θt
= 1

∂θt+1

∂vt
=

dt
2L

(tan(φt) + tan(φt+1))

∂θt+1

∂φt
=

dt
2L

(
vt

cos2(φt)
+

vt+1

cos2(φt+1)
)

∂θt+1

∂a
=

dt2 ka(vt, a)
2L

tan(φt+1)

∂θt+1

∂ψ
=

dt2 vt+1 kψ(φt, ψ)
2L cos2(φt+1)

(33)

Finally the partials with respect to the velocity v and steering
angle φ are:

∂vt+1

∂vt
= 1

∂vt+1

∂a
= dt ka(vt, a)

(34)

and:
∂φt+1

∂φt
= 1

∂φt+1

∂ψ
= dt kψ(φt, ψ)

(35)

We also need to define the function, p, mapping the state,
x, to the Euclidean workspace, and its derivatives. Because we
are modeling the car from the center of the rear axle, we can
minimize the encompassing area of the collision avoidance
circle by shifting the collision center to lie on the center of
the car rather than on the real axle (Figure 7):

x̄ = x +
L
2

cos(θ)

ȳ = x +
L
2

sin(θ)
(36)

The non-zero derivatives of the collision disk center are:
∂x̄
∂x

= 1
∂ȳ
∂y

= 1

∂x̄
∂θ

= −
L
2

sin(θ)
∂ȳ
∂θ

=
L
2

cos(θ)
(37)

The above derivatives, along with those of the continuous
dynamics (Equation 27), and those of the trapezoidal inte-
gration (Equations 31-35), fully define the goal cost gradient
(Equation 13).

To compute collisions, we also define the radius of the
collision disk, assuming a 2-to-1 length to width ratio for the
car:

rx =
L
√

5
4

(38)

Equation 38 together with the continuous dynamics (Equa-
tion 27) and the offset collision circle center (Equation 36),
allows us to compute the linear continuous collision checks
between RK4 integration steps in order to estimate the time
to collision with any obstacles in the scene. After computing
the time to collision, we can compute the collision cost, using
Equation 8, and the collision cost gradient, by combining

Fig. 8: Car Following: A smooth car-like robot, shown in
orange, navigates to follow the lead car on the right.

Equations 22, 31-35, and 37. Combining the collision cost
gradient with the goal cost gradient gives the full gradient,
which can then be used in Algorithm 1 for the control update.

B. Dynamic Goals

The goal cost function defined in Equation 7 focuses on a
single static goal. However, in many cases robots can have
dynamic goals (e.g., chasing a moving target). In such cases,
the robot needs to understand the moving nature of its goal to
successfully reach it. Our framework can be easily adapted to
support such dynamic goals. Simply greedily minimizing the
distance to a dynamic goal can result in oscillations around
the goal as it moves. To remedy this oscillatory behavior, we
can compute the goal cost, Cgoal, at multiple temporal points,
and then average those costs:

Cdyn goal =
1
n

n∑
i=1

Cgoal(u,pt i
goal) (39)

This requires the robot not only to reach the goal, but then to
stay on top of it as it keeps moving. In effect, it requires the
robot’s velocity to synchronize with that of the goal. We show
this type of dynamic goal behavior in the following scenario:

Car-following: In this scenario, a smooth car-like robot is
attempting to follow a passive car moving at a constant speed,
while a third slower moving car has gotten between them. The
robot tries to maintain a small following distance behind the
lead obstacle, but the trailing obstacle starts too close for the
robot to move in between. As such, the car needs to wait for
a gap to open between the obstacles before sliding in. See
Figure 8 for an overview.

C. Comparison to ORCA: 2 vs 1 Oncoming

In this scenario, two agents standing on one side of an
environment have to move toward a third agent that is standing
on the opposite side. As shown in Figure 9a, using the ORCA
framework to plan for holonomic, velocity-controlled agents
results in the lone agent staying put until the other two agents
have moved around it. This is due to the fact that ORCA
conservatively approximates the set of forbidden velocities
with half-planes throwing away too many feasible velocities
that the agents could have taken. In contrast, by using our
subgradient-based optimization framework, all three agents are
able to quickly resolve the collisions and reach to their goals
in a timely manner as depicted in Figure 9b. In addition,
as compared to ORCA and many of its extensions, such
as [2] and [6], our approach plans directly in the agent’s
control space allowing us to find smooth and collision-free

(a) Velocity Robots (V) - ORCA ([51])

(b) Velocity Robots (V) - NH-TTC

(c) Differential Drive Robots (DD) - NH-TTC

Fig. 9: 2 vs 1 Oncoming: Two simulated robots move from
right to left while a third moves from left to right. All figures
show the robots after 4 seconds of simulation. The traces of the
robots are shown as colored disks which are light at their initial
positions and dark at their current positions. (a) Using the
ORCA framework, the standalone robot is reluctant to move
forward until the other two robots have walked around it. (b)
In contrast, using NH-TTC, all three robots are able to safely
reach to their goals in a timely manner. (c) Similar behavior
is obtained when NH-TTC plans for differential-drive agents.

paths for different motion models without being required
to cast controls into an intermediate velocity space. As an
example, see Figure 9c for trajectories obtained by NH-TTC
for differential-drive robots.

D. Optimization Performance Analysis

We analyze the performance of our NH-TTC approach in
the car-following scenario (see Section VIII-B) by varying the
time that the robot has at its disposal to plan for a new control,
as well as the maximum steering angle velocity that the car
can attain. Figure 10 reports the total cost of the controlled-
robot averaged over 1,000 runs for various planning times,
ranging from 1 ms to 15 ms, and four distinct control bounds.
Overall, as can be seen in the figure, our subgradient descent
implementation requires only a small optimization time to start
finding low cost trajectories. Using, for example, a very tight
constraint of 1 rad/s on the steering angle, NH-TTC is able
to find near-optimal solutions within 5 ms of planning per
time step. As we increase the control bounds from 1 rad/s
to 20 rad/s, the quality of the trajectories returned by NH-
TTC remains nearly unchanged while the cost obtained still
exhibits low variance across different runs. This highlights the
ability of our approach to efficiently search the control space
regardless of its size. In contrast, a sampling-based control
approach would require more and more time to find good

Fig. 10: Trajectory Cost Over Optimization Time: Perfor-
mance analysis of NH-TTC for various control bounds in the
car-following scenario shown in Figure 8. The plot depicts
the sum of the costs of the taken controls as a function of
the available planning time for a variety of maximum steering
angle velocities, ψ. Solid lines denote averages over 1,000
runs, with each run lasting 300 frames, and shaded regions
denote 90% confidence intervals. For a large variety of bounds,
our approach is able to quickly find locally optimal solutions
exhibiting low variance.

trajectories as the range of the robot’s valid steering angle
increases, making it impractical for real-time planning settings.

To further show the robustness of our subgradient-based
optimization, we test its sensitivity to the initial control, u0,
given as input to Algorithm 1. In particular, we chose a
snapshot from the random scenario shown in Figure 11a,
where a simple car-like robot is interacting closely with a
large number of dynamic obstacles. We ran NH-TTC using five
different initial controls while allowing 5 ms of planning time
for the car. Across all five runs, NH-TTC completes between
164 and 185 subgradient descent iterations within the 5 ms
of the given planning time. Figures 11b-c show the evolution
over time of the best cost seen so far and the corresponding
control for each of the runs, where the first descent iteration
is delayed by 0.3 ms to pre-compute the obstacle trajectories.
As highlighted by the cost field in Figure 11c, the car has
to solve a complex optimization problem, with many local
minima. However, while the initial costs across all of the runs
has a large spread, NH-TTC is able to quickly converge to
similar near-optimal solutions in only 3 ms.

(a) Scenario
0 1 2 3 4 5

Optimization Time (ms)

0

0.5

1

1.5

2

lo
g

(C
+

1
)

u
0
=(0,0)

u
0
=(-0.2,0.2)

u
0
=(0.2,0.4)

u
0
=(-0.2,-0.2)

u
0
=(0.2,-0.4)

(b) Control Cost Over Time (c) Cost Field

Fig. 11: Effect of Initial Control Guess: (a) A simple car navigating to the goal (the yellow X), avoiding the random velocity
agents. (b) The log cost of the best control found so far for a variety of initializations over 5 ms of planning. (c) The cost
field corresponding to the simple car’s controls. To better show the gradient, values are plotted in log scale with the color
corresponding to log(C(u) + 1). The evolution of each optimization run is shown in its corresponding color.

	Introduction
	Related Work
	Notation and Assumptions
	NH-TTC Problem Formulation
	Optimization-based Formulation
	NH-TTC Cost Function

	Control Optimization
	Subgradient Descent
	Subgradient Computation
	Cost Computation
	Goal Cost Gradient
	Collision Cost Gradient

	State Constraints
	Implementation Details

	Single-Agent Collision Avoidance
	Random Agents Scenario
	Additional Scenarios and Results

	Multi-Agent NH-TTC
	Heterogeneous Circle
	Comparison to Other Techniques
	Execution on Physical Robots

	Conclusion
	Case Study: Smooth Car
	Dynamic Goals
	Comparison to ORCA: 2 vs 1 Oncoming
	Optimization Performance Analysis

