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Human crowds often bear a striking resemblance to interacting particle systems, and this has
prompted many researchers to describe pedestrian dynamics in terms of interaction forces and po-
tential energies. The correct quantitative form of this interaction, however, has remained an open
question. Here, we introduce a novel statistical-mechanical approach to directly measure the interac-
tion energy between pedestrians. This analysis, when applied to a large collection of human motion
data, reveals a simple power law interaction that is based not on the physical separation between
pedestrians but on their projected time to a potential future collision, and is therefore fundamentally
anticipatory in nature. Remarkably, this simple law is able to describe human interactions across
a wide variety of situations, speeds and densities. We further show, through simulations, that the
interaction law we identify is sufficient to reproduce many known crowd phenomena.

In terms of its large-scale behaviors, a crowd of pedes-
trians can look strikingly similar to many other collec-
tions of repulsively-interacting particles [1–4]. These sim-
ilarities have inspired a variety of pedestrian crowd mod-
els, including cellular automata and continuum-based ap-
proaches [5–8], as well as simple particle or agent-based
models [9–15]. Many of these models conform to a long-
standing hypothesis that humans in a crowd interact
with their neighbors through some form of “social po-
tential” [16], analogous to the repulsive potential ener-
gies between physical particles. How to best determine
the quantitative form of this interaction potential, how-
ever, has remained an open question, with most previous
researchers employing a simulation-driven approach.

Previously, direct measurement of the interaction law
between pedestrians has been confounded by two primary
factors. First, each individual in a crowd experiences a
complex environment of competing forces, making it dif-
ficult to isolate and robustly quantify a single pairwise
interaction. Secondly, a pedestrian’s motion is strongly
influenced not just by the present position of neighboring
pedestrians, but by their anticipated future positions [17–
21], a fact which has influenced recent models [22–25].
Consider, for example, two well-separated pedestrians
walking into a head-on collision (Fig. 1a). These pedestri-
ans typically exhibit relatively large acceleration as they
move to avoid each other, as would result from a large
repulsive force. On the other hand, pedestrians walking
in parallel directions exhibit almost no acceleration, even
when their mutual separation is small (Fig. 1b).

Here, we address both of the aforementioned factors
using a data-driven, statistical mechanics-based analysis
that accounts properly for the anticipatory nature of hu-
man interactions. This approach allows us to directly and
robustly measure the interaction energy between pedes-
trians. The consistency of our measurements across a
variety of settings suggests a simple and universal law
governing pedestrian motion.

To perform our analysis, we turn to the large col-

lections of recently published crowd datasets recorded
by motion-capture or computer vision-based techniques.
These datasets include pedestrian trajectories from sev-
eral outdoor environments [26, 27] and controlled lab set-
tings [28] (a summary of datasets is given in the Sup-
plemental Material [29]). To reduce statistical noise,
datasets with similar densities were combined together,
resulting in one Outdoor dataset comprising 1,146 trajec-
tories of pedestrians in sparse-to-moderate outdoor set-
tings, and one Bottleneck dataset with 354 trajectories
of pedestrians in dense crowds passing through narrow
bottlenecks. In analyzing these datasets, our primary
tool for quantifying the strength of interactions between
pedestrians is the statistical-mechanical pair distribution
function, denoted g.

As in the typical condensed matter setting [30], here we
define the pair distribution function g(x) as the observed
probability density for two pedestrians to have relative
separation x divided by the expected probability den-
sity for two non-interacting pedestrians to have the same
separation. In general, the probability density for non-
interacting pedestrians cannot be known a priori, since it
depends on where and how frequently pedestrians enter
and exit the environment. However, for large datasets we
are able to closely approximate this distribution by sam-
pling the separation between all pairs of pedestrians that
are not simultaneously present in the scene (and there-
fore not interacting). As defined above, small values of
the pair distribution function, g(x) ≪ 1, correspond to
situations where interactions produce strong avoidance.

If the Cartesian distance r between two pedestrians
were a sufficient descriptor of their interaction, we would
expect the shape of the pair distribution function g(r) to
be independent of all other variables. However, as can
be seen in Fig. 1c, g(r) has large, qualitative differences
when the data is binned by the rate at which the two
pedestrians are approaching each other, v = −dr/dt. In
particular, pedestrians with a small rate of approach are
more likely to be found close together than those that are
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FIG. 1. Analysis of anticipation effects in pedestrian motion.
(a) Two pedestrians react strongly to avoid an upcoming colli-
sion even though they are far from each other (path segments
over an interval of 4 s are shown as colored lines, with ar-
rows indicating acceleration). (b) In the same environment,
two pedestrians walk close to each other without any rela-
tive acceleration. (c) The pair distribution function g as a
function of inter-pedestrian separation r shows very different
behavior when plotted for pedestrian pairs with different rate
of approach v = −dr/dt. Units of v are m/s. (d) In con-
trast, when g is computed as a function of time-to-collision,
τ , curves corresponding to different v collapse onto each other.

approaching each other quickly (as evidenced by the sep-
aration between the curves at small r). A particularly
pronounced difference can be seen for the curve corre-
sponding to small v, where the large peak suggests a
tendency for pedestrians with similar velocities to walk
closely together.

While the distance r is not a sufficient descriptor of
interactions, we find that the pair distribution function
can, in fact, be accurately parameterized by a single vari-
able that describes how imminent potentially upcoming
collisions are. We refer to this variable as the time-to-
collision, denoted τ , which we define as the duration of

time for which two pedestrians could continue walking
at their current velocities before colliding. As shown in
Fig. 1d, when the pair distribution function is plotted
as a function of τ , curves for different rates of approach
collapse onto each other, with no evidence of a separate
dependence of the interaction on v. Even when binned
by other parameters such as the relative orientation be-
tween pedestrians, there is no significant difference be-
tween curves (see the Supplemental Material [29]). This
consistent collapse of the curves suggests that the sin-
gle variable τ provides an appropriate description of the
interaction between pedestrians.

This pair distribution function, g(τ), describes the ex-
tent to which different configurations of pedestrians are
made unlikely by the mutual interaction between pedes-
trians. In general, situations with strong interactions
(small τ) are suppressed statistically, since the mutual
repulsion between two approaching pedestrians makes it
very unlikely that the pedestrians will arrive at a situ-
ation where a collision is imminent. This suppression
can be described in terms of a pedestrian “interaction
energy” E(τ). In particular, in situations where the av-
erage density of pedestrians does not vary strongly with
time, the probability of a pair of pedestrians having time-
to-collision τ can be assumed to follow a Boltzmann-like
relation, g(τ) ∝ exp[−E(τ)/E0]. Here, E0 is a character-
istic pedestrian energy, whose value is scene-dependent.

This use of a Boltzmann-like relation between g(τ) and
E(τ) amounts to an assumption that the systems being
considered are at, or near, statistical equilibrium. In our
analysis, this assumption is motivated by the observa-
tion that the intensive properties of the system in each
of the datasets (e.g., the average pedestrian density and
walking speed) are essentially time-independent. If this
time-independence is taken as given, a Boltzmann-like
relation follows as a consequence of entropy maximiza-
tion. By rearranging this relation, the interaction energy
can be expressed in terms of g(τ) as:

E(τ) ∝ ln [1/g(τ)]. (1)

A further, self-consistent validation of Eq. (1) is provided
below.

Figure 2 plots the interaction law defined by Eq. (1)
using the values for g(τ) derived from our two aggre-
gated pedestrian datasets. It is worth emphasizing that
these two datasets capture very different types of pedes-
trian motion. The pedestrian trajectories in the Outdoor
dataset are generally multi-directional paths in sparse-
to-moderate densities, with pedestrians often walking in
groups or stopping for brief conversations. In contrast,
trajectories in the Bottleneck dataset are largely unidi-
rectional, with uniformly high density, and with little
stopping or grouping between individuals.

Remarkably, despite their large qualitative differences,
both datasets reveal the same power-law relationship un-
derlying pedestrian interactions. For both datasets, the
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FIG. 2. (a) The interaction energy computed from the dense
Bottleneck dataset and from the more sparse Outdoor dataset
(inset). The overall constant k is normalized so that E(1) = 1.
Both datasets fit well to a power law up to a point marked
t0, beyond which there is no discernible interaction. Solid
lines shows the fit to the data and colored regions show their
corresponding 95% confidence interval (Bottleneck, R2 = 0.94;
Outdoor, R2 = 0.92). (b) The interaction energy in both
datasets is well described by a power law with exponent 2.

interaction energy E shows a quadratic falloff as a func-
tion of τ , so that E(τ) ∝ 1/τ2 over the interval where E
is well-defined. For smaller values of τ (less than ∼200
ms), the energy seen in the data saturates to a maximum
value, likely as a consequence of finite human reaction
times. For sufficiently large values of τ , on the other
hand, the observed interaction energy quickly vanishes,
suggesting a truncation of the interaction when the time-
to-collision is large. We denote the maximum observed
interaction range as t0 (Bottleneck: t0 ≈ 1.4 s; Outdoor:
t0 ≈ 2.4 s).

Importantly, t0 does not, by itself, indicate the in-
trinsic interaction range between pedestrians, since in-
teractions between distant, non-neighboring pedestrians
are screened by the presence of nearest-neighbors, as in
other dense, interacting systems [30, 31]. For a crowd
with density ρ, the characteristic “screening time” can
be expected to scale as the typical distance between
nearest neighbors, ρ−1/2, divided by the mean walk-

ing speed u. Such scaling is indeed consistent with the
trend observed in our data, with the denser Bottleneck
dataset (ρ = 2.5m−2, u = 0.55m/s) demonstrating a
smaller value of t0 than the sparser Outdoor dataset
(ρ = 0.27m−2, u = 0.86m/s) [32]. While the large-
τ behavior in our datasets is therefore dominated by
screening, we can use the largest observed values of t0
to place a lower bound estimate on the intrinsic range
of unscreened interactions (which we denote as τ0). This
estimate suggests that an appropriate value is τ0 ≈ 3 s,
which is consistent with previous research demonstrating
an interaction time horizon of 2− 4 s [21].

Since the interaction energy follows a power law with
a sharp truncation at large τ , we infer from the data the
following form of the pedestrian interaction law:

E(τ) =
k

τ2
e−τ/τ0 . (2)

Here, k is a constant that sets the units for energy.
To demonstrate the general nature of the identified in-

teraction law, we performed simulations of pedestrians
that adapt their behavior according to Eq. (2) via force-
based interactions. In particular, the energy E(τ) di-
rectly implies a natural definition of the force F experi-
enced by pedestrians when interacting:

F = −∇r

(
k

τ2
e−τ/τ0

)
, (3)

where ∇r is the spatial gradient. A full analytical ex-
pression for this derivative is given in the Supplemental
Material [29].

For the purposes of simulation, each pedestrian is also
given a driving force associated with its desired direction
of motion, following Ref. 9. The resulting force model is
sufficient to reproduce a wide variety of important pedes-
trian behaviors, including the formation of lanes, arching
in narrow passages, slowdowns in congestion, and antic-
ipatory collision avoidance (Fig. 3). Additionally, the
simulated pedestrians match the known fundamental di-
agram [33] of speed-density relationships for real human
crowds and qualitatively capture the empirical behavior
of g(r) depicted in Fig. 1c [29].

Our simulations also reproduce the anticipatory power
law described by Eq. (2), as shown in Fig. 4. In con-
trast, simulations generated by distance-based interac-
tion forces fail to show a dependence of E on τ (Fig. 4).
Other, more recent models of pedestrian behavior also
cannot consistently capture the empirical power-law re-
lationship (see the Supplemental Material [29]). The abil-
ity of our own simulations to reproduce E(τ) also pro-
vides a self-consistent validation of our use of the Boltz-
mann relation to infer the interaction energy from data.

Interesting behavior can also be seen when Eq. (3) is
applied to walkers propelled forward in the direction of
their current velocity without having a specific goal (as
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FIG. 3. Stills from simulations of agents following the force
law derived from Eq. (2). In figures (a)-(d), agents are rep-
resented as cylinders and color-coded according to their goal
direction. The simulated agents display many emergent phe-
nomena also seen in human crowds, including arching around
narrow passages (a), clogging and “zipping” patterns at bot-
tlenecks (c), and spontaneously self-organized lane formation
(b and d). Figure (e) depicts a simulation of agents without a
preferred goal direction (arrows represent the agents’ current
orientations). The agents’ interactions lead to large-scale syn-
chronization of their motion. Further simulation details are
given in the Supplemental Material [29].

implemented, for example, in Ref. 34). In such cases,
complex spatio-temporal patterns emerge, leading even-
tually to large scale synchronization of motion. An exam-
ple is illustrated in Fig. 3e, where a collection of pedestri-
ans that is initialized to a high energy state with many
imminent collisions settles over time into a low energy
state where pedestrians move in unison. This result is
qualitatively similar to observed behavior in dense, non-
goal-oriented human crowds [35], and is reminiscent of
the “flocking” behavior seen in a variety of animal groups
[36–40]. A detailed study of such collective behaviors,
however, is outside the scope of our present work.

While the model implied by Eq. (3) is widely applica-
ble, it may not be sufficient on its own to capture cer-
tain crowd phenomena. In particular, the shock waves

FIG. 4. Inferred interaction energy E ∝ ln(1/g) as a func-
tion of time-to-collision τ for different simulations, obtained
using the anticipatory force described by Eq. (3), and the
distance-dependent force described in Ref. 9 (inset). For sim-
ulations with strictly distance-dependent interactions, the in-
ferred interaction energy does not show a dependence on τ .
In contrast, simulations following our model closely match
the observed empirical power law for E(τ). Shaded regions
denote average energy values ± one standard deviation.

and turbulent flows that have been reported to occur
in extremely high density crowds [41] are not present
in our simulation results. One potential reason is that
in such very dense situations, saturating effects such as
finite human reaction time become relevant, and these
alter the quantitative form of the interaction in a way
that is not well-captured by our time-to-collision-based
analysis. Augmenting our result with an additional close-
ranged component of the interaction may give a better
description of these extremely dense scenarios, and is a
promising avenue for future work.

To conclude, our statistical mechanics-based analysis
of a large collection of human data has allowed us to
quantify the nature and strength of interactions between
pedestrians. This novel type of analysis opens new av-
enues for studying the behavior of humans using real life
data. The data we have analyzed here reveals the ex-
istence of a single anticipatory power law governing the
motions of humans. The consistency of this law across a
variety of scenarios provides a new means to understand
how pedestrians behave and suggests new ways to eval-
uate models of pedestrian interactions. Further, these
results suggest a general quantitative law for describing
human anticipation that may extend to other studies of
human behavior, which may therefore be amenable to a
similar type of analysis.

Complete simulation source code, along with
videos and links to data used in this study,
can be found at our companion webpage:
http://motion.cs.umn.edu/PowerLaw. We would
like to thank Anne-Hélène Olivier, Alex Kamenev,
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