Anytime Navigation with Progressive Hindsight Optimization

Julio Godoy, loannis Karamouzas, Stephen J. Guy and Maria Gini

Abstract— In multi-robot systems, efficiently navigating in a
a partially-known environment is an ubiquitous but challenging
task, as each robot must account for the uncertainty introduced,
for example, by other moving robots. This uncertainty makes
pre-computed plans not always applicable, and often hinders
the desired efficient use of the robot’s resources. In this work, we
present a local anytime approach for robot motion planning that
accounts for the uncertainty of the environment by generating
‘snapshots’ of possible future scenarios. Our approach adapts
the Hindsight optimization technique to allow robots to plan
their immediate motion based on long-term efficiency. We
validate our approach by comparing the efficiency on the paths
executed against a state-of-the art navigation technique in a
variety of scenarios, and show that by accounting for the
uncertainty in the environment, agents can improve their time-
and energy-efficient motions.

I. INTRODUCTION

The task of safely steering an agent amidst static and
dynamic obstacles has many applications in robotics, from
vacuum cleaning using Roombas to delivering parts for
packaging in warehouses [1]. Often, it is important for the
robot to navigate in an efficient manner, for example, to
save resources (i.e., battery life) or reach critical locations
(e.g., in search and rescue applications). However, when
multiple agents or dynamic obstacles are simultaneously
moving in the environment, navigation becomes much more
challenging; potential conflicts between the agents’ paths
result in uncertainty in their future trajectories. This uncer-
tainty prevents robots from following a pre-computed ideal
navigation plan.

A common way to address this problem is by computing
optimal paths for the robots in a composite configuration
space. However, this requires a centralized planner with
perfect knowledge of the environment, an assumption that
may not always hold. An alternative approach is to de-
couple global planning from local collision avoidance and
periodically replan a robot’s path when significant changes
are observed. However, these decentralized solutions do not
typically account for uncertainty induced by the presence of
the dynamic entities sharing the environment.

In this paper, we propose an anytime local approach to
plan the motions of multiple agents in a decentralized man-
ner. We adapt the Hindsight optimization technique [2] from
Al to account for uncertainty in the multi-agent navigation
problem and introduce the concept of Progressive Hindsight
optimization (PHOP), which allows each robot to plan ahead
and compute its immediate actions based on possible future

*All authors are with the Department of Computer Science and Engi-
neering, University of Minnesota, USA

situations that it may encounter. The resulting algorithm
is anytime, enabling robots to follow in real-time the best
solution found so far and improve their computed action
plans when more time is available. As compared to state-
of-the-art local navigation techniques, our method leads to
more time- and energy-efficient paths due to the ability of
the robots to anticipate and respond proactively.

The rest of this paper is organized as follows. We give a
brief overview of prior work in Section II. In Section III, we
highlight the Hindsight optimization technique and discuss
how it can be used for multi-agent navigation. Section IV
presents our progressive Hindsight optimization approach.
In Section V, we evaluate the efficiency of our planner on
several benchmarks. Finally, some conclusions and plans for
future research are presented in Section VI.

II. RELATED WORK

Computing a collision-free motion from a given start to
a given goal configuration has been extensively studied in
robotics (see [3] for an overview). When multiple agents
need to simultaneously move in an environment, the problem
is typically handled by centralized planners and decoupled
methods. Centralized planners combine the configuration
spaces of the agents into a composite one (e.g., [4]), whereas
decoupled methods, such as in [5], plan a path for each robot
independently and coordinate the resulting paths. Space-
time planning algorithms have also been proposed that add
the time dimension to the agent’s configuration space and
plan in a joint state-time space [6], [7]. However, all these
aforementioned approaches are quite slow and are not suited
for real-time navigation of multiple agents.

An alternative approach is to decompose global planning
from local collision avoidance. Typically, a roadmap is used
to direct the global motion of each agent, whereas collisions
with other agents and the static part of the environment
are resolved by using a local planner. Over the past twenty
years, numerous local collision avoidance techniques have
been proposed based on potential fields [8], social forces [9]
and Velocity Obstacles variants [10], [11].

Different global planning approaches have also been pro-
posed using PRMs [12], RRTs [13] and navigation meshes
[14]. Approaches have also been introduced that dynamically
update the weights of a roadmap [15] and periodically
replan paths in an anytime, deterministic fashion [16], [17].
However, due to the decentralized nature of these planners,
an agent cannot typically account for the uncertainty induced
by the presence of the other agents in the environment.
In addition, it is not always obvious when an agent needs

O

1

)

(a) Start positions (b) Goal positions

4J
2
0

5 4 3 2 -1 0
X(m)

(c) ORCA

4
E:
=
0
12 3 4 5 =

X(m)

(d) PHOP

Fig. 1: Crossing (3 Agents). Three agents cross paths. (a) Initial positions of the agents. (b) Goal positions of the agents.
(c) When navigating with ORCA, the agents run into and push each other resulting in inefficient paths. (d) When using our
PHOP approach the agents plan around potential upcoming collisions, resulting in more efficient paths. In particular, the
agent moving vertically adjusts to avoid the horizontal agents.

to replan its path. To address these issues, we propose an
anytime local approach based on the Hindsight optimization
technique from AI and combine it with the ORCA navi-
gation framework proposed in [11] to guarantee collision-
free motions. Our approach can be seen as a form of
Receding Horizon Control [18], although it does not require
communication between the agents and allows planning for
longer time horizons.

III. OVERVIEW

We address the problem of goal-oriented navigation for
multiple agents in real world environments, where uncer-
tainty caused by dynamic elements may reduce the efficiency
in their navigation. Consider for example the three agents
in Figure la. Their goal is to reach the opposite side of a
room (Figure 1b). If any of the agents does not consider
the potential future paths of the other two agents, it may
easily get stuck in a local minimum and its motion becomes
very inefficient (Figure 1c), as it may need to wait until one
of the other agents reaches the goal before continuing its
path. If, instead, the agent considers the future movement
of its neighbors, it could predict the local minimum and
plan accordingly to avoid it (Figure 1d), improving the
efficiency of its motion. In this work, we propose an anytime
planning approach, based on Hindsight optimization [2], to
increase the agent’s awareness of potential future states of the
environment and account for the likely actions of its nearby
neighbors.

A. Problem Description

We assume we are given a set of n heterogeneous agents,
each one with a unique start and goal position, g, specified in
R2. The task, then, is to safely and efficiently steer the agents
to their goals in a decentralized, collision-free manner. We
assume that an agent located at position p can advance by
selecting an action a from a set of actions A (see Figure 2a).
In order to ensure collision- free motion, these actions are
not taken directly, but rather are used as a preferred velocity
Vpref 10 a collision avoidance subroutine. Consequently,
during each simulation cycle, an agent has to select an action

(Vprer) that leads to efficient goal-oriented navigation, and
this action will result in a new current velocity v as mediated
by the collision avoidance method. We assume that the agent
has perfect sensing within a fixed range of 15 meters.

B. ORCA Collision Avoidance

Selecting collision-free velocities as close as possible to
Vpref 18 a challenging problem in and of itself. Here, we use
the ORCA (Optimal Reciprocal Collision Avoidance) navi-
gation framework proposed by Berg et al. [11], a geometric
approach which provides a computationally efficient solution
to this problem. While ORCA provides provably optimal
motion in some limited scenarios, it is, in general, not a suf-
ficient method to generate efficient paths for multiple agents
navigating in complex, shared environments. In particular,
ORCA can lead agents to choose velocities that lead to local
minima such as standing still, rather than selecting velocities
with longer term benefits like, for example, moving sideways
to avoid congestion. Our approach builds on ORCA while
allowing agents to change their preferred velocity each time
step to improve their individual motion efficiency.

C. Uncertainty

A fundamental problem for an agent navigating in an
environment shared with other agents is the uncertainty in the
future motion of those other agents, and the uncertainty in
how these agents will respond to any new agent approaching
them. Our methods proposes to account for this uncertainty
by having each agent account for many different potential
future states for each action before executing any action. In
this way, an agent can, in ‘hindsight’, evaluate and select an
action that in the long term seems more efficient, even if it
may be less efficient locally. In our approach, each agent
extrapolates a potential deterministic future based on the
motions of other agents in its neighborhood, and evaluates
the impact of many different actions sequences. This ap-
proach is analogous to the Hindsight optimization technique
commonly used in the probabilistic planning domain.

(a) Action space

(b) Example Trajectories

Fig. 2: Actions. a) The nine available actions correspond to moving at 1.5 m/s with different angles with respect to the
goal: 0°, o, —av, 90°, —90°, 180°, 180° 4 a, 180° — o and complete stop. In our implementation, oo = 20°. b) Example of
progressive agent trajectories with 1, 2 and 3 partitions respectively.

D. Hindsight Optimization

Hindsight optimization (HOP) is a technique for online
action selection used to compute an upper bound on the
expected reward of an action by allowing the agent to ‘peek’
on potential future scenarios and plan accordingly. Although
the expected reward is not a tight upper bound on the real
value of the action, it is often indicative enough for action
comparison purposes [19]. HOP has been applied to many
domains [2], [20]. An agent using HOP formulates a series
of T-Horizon futures of length 7, computes a policy for
each time ¢t € T and obtains rewards for executing that
policy from ¢ = 0 until £ = T, which is associated with
the policy at time ¢ = 0 (i.e. the first action executed).
By generating multiple deterministic future scenarios, and
averaging the results under the same initial action, the agent
can estimate, in hindsight, the best action to perform in
the present. For a more detailed theoretical description of
Hindsight optimization, we refer the reader to [20].

E. Anytime Approaches

Although using HOP can result in large computational
gains [20], the planning time must be balanced with the
need to quickly adapt to new scenarios. This is critical as-
suming that agents are navigating through a partially-known
environment, continuously sensing and updating information
about the environment that may invalidate previously gen-
erated plans. Real time constraints may require aborting the
planning process for an action to be performed, or when
new relevant information is gathered. Our anytime planner
computes paths in a progressive manner to ensure that when
the planning process must be stopped, the current best plan
can be executed. Because of this anytime feature, we call
our approach Progressive Hindsight optimization (PHOP).

IV. APPROACH

The Progressive Hindsight optimization approach works
by allowing each agent to simulate possible plans of actions
for a given time horizon, and to analyze in ‘hindsight’ the
consequences of each plan. It accounts for the uncertainty
in the environment by creating potential future scenarios,
in order to obtain an estimate of the value of the agent’s
immediate actions. We assume nine available actions for the

agent, each corresponding to a different preferred velocity
value vp,.ef. See Figure 2a for details.

Our approach is executed at each simulation cycle and
finishes when the agent is at its goal position. At each
timestep, the agent follows the sense-plan-act cycle.

A. Reward Function

We evaluate an action based on the agent’s local informa-
tion (position and velocities of neighbors). We decompose
the reward function into two components, that measure the
progress of the agent towards its goal, and the energy that
the agent is expected to spend.

The progress component is defined as the scalar product
of the agent’s velocity v with the normalized vector pointing
from the position p of the agent to its goal g:

Progress(a) =v - T (D)
g —pl
As such, it highly rewards actions that move the agent closer

to its goal.

The energy component approximates the energy that is
expected to be consumed (per unit time) by the agent while
it is moving as follows:

Energy(a) =b+c |[Vpret||*.)

Here, the first term, b, corresponds to the energy consumed
by the agent due its processing and sensing capabilities,
while the second term, ¢+ ||V et [|%, corresponds to the energy
consumed by the agent while moving and is proportional to
the square of the agent’s preferred velocity. In our implemen-
tation, we use 1 as the value for both b and c. Note that by
using the preferred velocity instead of the actual collision-
free velocity v, we are comparing the action’s intended effect
(Eqn. 2) with its actual outcome (Eqn. 1). In combination,
our reward function encourages actions that maximize goal
oriented motions while using the least amount of energy:
_ Progress(a)

R(a) = Energy(a) ®)

B. Plan generation and execution

The agent performs the plan generation process based on
Hindsight optimization. This process consists of simulating

multiple plans of actions in the future. For each plan, the
agent internally simulates the execution of a sequence of
actions for a specified number of timesteps (7-Horizon)
in the future. During each timestep of the simulation, the
agent updates its potential position and velocity, based on
the prediction of its relative position to the static obstacles
and to its neighbors’ positions and velocities. The agent
also predicts its neighbors’ motion based on their observed
velocities assuming that they are using ORCA to avoid
potential collisions in these predictions. Based on each
predicted timestep, the agent computes its potential reward
using Eqn. 3. After the T-Horizon of the projected plan is
reached, the agent averages its reward across the T" simulated
timesteps, and associates the averaged reward with the initial
action of the plan. The planning continues until a specified
time limit is reached. This allows the agent to have a broad
estimate of the value of each of its actions when time is very
limited, and to get a more accurate estimate of the expected
reward for each action when more time is available. Finally,
the agent performs the action that maximizes the expected
reward based on the plans generated.

In order to account for unforeseen changes in the environ-
ment (for example, other agents changing their motions in an
unexpected manner), it becomes necessary to replan at every
timestep, allowing the agent to adapt to the new positions and
velocities of the other agents. Hence, our planner is executed
at every timestep to increase the agent’s adaptability.

Compared to the original Hindsight optimization tech-
nique, our approach has two main differences. First, instead
of generating different futures independent of the agent’s
actions, we consider the different futures that could occur as
a consequence of the agent taking a particular sequence of
actions. This is because the agent and its neighbors influence
each other with their actions. Second, to make the approach
anytime, we need to ensure that the quality of the obtained
solution increases as more time is given to the algorithm. To
do this, we increasingly partition the 7-Horizon across the
different available actions, computing a more detailed plan
as the number of partitions increases. Fig. 2b shows three
example action plans with 1, 2 and 3 partitions respectively.

C. Algorithmic Description

Algorithm 1 presents the pseudocode for a simulation loop
using PHOP. It takes as input the 7-Horizon desired for
the plan (timeHorizon) and a time limit for the planning
process (temelLimsit).

The function generate Plans(partitions) returns a set of
plans (PlanSet) for the agent to simulate. We adopted a
top-down approach for plan generation: we first simulate
the agent following each of its individual actions for the
entire T-Horizon, and then incrementally partition the 7-
Horizon (according to the value of partitions) to combine
the simulation of multiple actions. Instead of populating
vectors for each plan we adopted a memory efficient ap-
proach that dynamically generates each action, based on
the current number of partitions desired. The function
hindsight(plan, timeHorizon) takes as input a single plan

A \ |
~
O -
B OOOOOOOOOOO C
o o
o o
o° %
o
o ~ L4 %
o o
o o
) o) Q)
©) o)
o mp ™ o
o 0 O
° o OO0
o o
° o ~O+0 O
o o
Oo ‘Oo “(
o o
o, o0
o o
©0000000°°

Fig. 3: Simulated scenarios. a) Corridor: Two agents travel
to reach the opposite side of the narrow corridor, and must
select their path before entering it. b) Circle: 64 agents move
to their antipodal points in a circle, but congestion forms in
the middle. c) 3-Exit: Ten agents must exit the room through
one of the exits, where the center exit is on the shortest path
but congestion develops.

Algorithm 1: PHOP step for an agent
1: Input: timeHorizon € Z, timeLimit € RT

2: initialize simulation, p =(Zstart, Ystart)

3: while not at the goal do

4: partitions < 1

5 time < 0

6: while time < timeLimit do

7 PlanSet + generate Plans(partitions)

8 for all plan € PlanSet do

9 PlanR <« hindsight(plan,timeHorizon)

10: a + initial Action(plan)

11 Count(a) + Count(a) + 1

. AvgR(a) Ang(a)*(%;7;£?3;1)+Planl%
13: a* + argmax, 4 AvgR(a)

14: checkTime(timeLimit)

15: end for

16: partitions < partitions + 1

17: end while
18: PerformAction(a*)
19: end while

and the T-Horizon specified. In this function, the agent
performs the plan generation process described in the pre-
vious section and returns its reward value. The function
intial Action(plan) returns the first action in the sequence
specified by plan, and it is used to relate the reward of the
plan to that initial action.

The planning process finishes when the time limit
has been reached, as checked both in line 6 and the
checkTime(timeLimit) function. If this is the case, the
algorithm returns the currently best evaluated action (a*).

This action serves as an input preferred velocity to the ORCA
framework in the PerformAction(a*) function, which in
turn computes a new collision-free velocity for the the agent
and the sense-plan-act cycle is repeated.

V. EXPERIMENTAL RESULTS

To better understand the performance of our proposed
approach we compared it to the performance of ORCA
in a variety of scenarios. Below we briefly describe each
scenarios:

o Crossing: Three agents cross paths while moving to-
wards their goals. (Fig 1a)

e Corridor: Two agents start at opposite sides of a
long, narrow corridor. The two agents cannot both fit
simultaneously. (Fig 3a)

o Circle: 64 agents walk to antipodal points on a circle.
(Fig 3b)

o 3-Exit: Ten agents exit a room with three exits. The
central exit is closest to most agents, but the congestion
will slow down the agents if all of them go through the
same exit. (Fig 3c)

In all scenarios, agents were given a planning horizon (7-
Horizon) of 60 seconds, and each agent was given 100ms
to run Algorithm 1 unless otherwise noted. These parameter
values were chosen as they allowed agents to differentiate
between plans, and to keep real-time performance of our ap-
proach, respectively. Each experimental result is the average
of 10 simulations. Small random perturbations were added
to the preferred velocities of the agents to prevent symmetry
problems. Results were gathered on an Intel Core 2 Duo at
2.4 GHz.

A. Performance Results

One way to measure the performance of the navigation
method is by computing the maximum time taken for the
agents to reach their goals. However, we can get a better
context for the performance of our approach by comparing
it to the theoretically best performance possible. In general,
the true optimal performance is difficult to compute exactly,
but we can compute a theoretical lower bound of this value
by dividing the length of shortest path to the goal by the max-
imum agent speed. Fig. 4 shows the corresponding results. In
all cases, the time taken for agents to reach their goals when
navigating using PHOP is shorter than when using ORCA,
often significantly shorter. The smallest relative performance
difference comes in the Circle scenario, this is because for
most of the time agents are moving in linear, uncontested
paths. Our method consistently outperforms ORCA with
improvements ranging from 45% (Circle) to 99% (Corridor,
Crossing) with respect to the lower bound of the optimal
travel time.

We can also measure an agent’s performance in terms of
energy used to travel to the goal. As described in Eqn. 3,
our agents seek to maximize progress to the goal, per unit
of expected energy expended. We would therefore expect
improved performance both in terms of time and energy
efficiency. To test the latter, we compute the average energy

388

180 1 PHOP
160 1 “ ORCA
£ 140 Lower Bound

Max Travel Time (s)
[e]
S

Crossing Circle
Scenario

v
0 . —

Corridor 3-Exit

Fig. 4: Performance (Time). A comparison of the maximum
travel time across four scenarios using PHOP, ORCA and a
lower bound estimate of the optimal travel time.

TABLE I: Performance (Energy). A comparison of the
average energy (in J - Kg~!-s~1) expended by the agents
across four scenarios using PHOP and ORCA.

Method Corridor 3 Exit Crossing Circle
ORCA 4,321 741 662 2,842
PHOP 893 317 254 2,790

expended by each agent on its path to the goal. Recall, our
measure of energy includes both the energy cost of being
on and responsive and the energy cost of moving. Again,
we see that in all cases, the average energy taken by agents
navigating with our method is much lower than when using
ORCA alone (see Table I).

B. Analysis

Agents employing our navigation approach display a vari-
ety of emergent behaviors which contribute to their improved
efficiency. For example, agents in the Crossing scenario
(Fig 1d), display an implicit form of coordination to resolve
the potentially upcoming congestion: as the two horizontally
moving agents reciprocate to avoid the upcoming collision,
the vertically moving agent moves far to the right to avoid
getting caught-up in the avoidance maneuver of the other two
agents. This is in contrast to using a simple ORCA approach
where the three agents move directly into a conflict and spend
significant time to resolve it. A similar type of coordination
is seen in the Corridor scenario (Fig 3a) where after one
agent chooses to go into the corridor, the other plans a
path that avoids the potential conflict created by entering the
already occupied corridor. Again, this is in contrast to ORCA
agents who meet in the middle of the corridor, slowing
down and pushing each other until one agent has completely
backtracked out.

Importantly, in both of the above scenarios, the coordina-
tion shown between agents is completely implicit with each
agent choosing their own locally optimal actions without
any communication. The lack of explicit communication
allows our approach to scale to large numbers of agents.
In the Circle scenario, over sixty agents must resolve mutual
collisions to successfully reach their goals. When navigating

N
o
L

N
Y
L

~Corridor

—3-Exit

Max Travel Time (s)
N
S

N
N
L

20

0 10 20 30 40 50 60 70 80 90 100
Time Limit to Plan (ms)
Fig. 5: Anytime Behavior. As each agent is given more time
to plan, the overall performance improves. Even with limited
planning time, our approach shows a significant improvement
over ORCA (as shown in Fig. 4).

using PHOP, the agents plan future actions that resolve the
heavy congestion in the middle of the circle very quickly.

Another emergent behavior seen by our agents is that
agents will take longer, less direct paths when these paths are
optimally more efficient than the direct path. The effect of
this behavior is most clearly seen in the 3-Exit scenario. Here,
when using ORCA, all agents gather around the single clos-
est exit leading to significant congestion around the exit. In
contrast, with our approach, several agents choose to egress
through one of the side exits, avoiding the congestion they
could have experienced and reducing the total congestion
experienced by all agents.

C. Computational Cost

As our approach is decentralized and each agent plans
independently, its computational cost scales quadratically
with respect to the number of neighbors, but is invariant
to the total number of agents in the environment. PHOP
is computationally more expensive than ORCA, as each
agent solves a planning problem for its entire neighborhood,
during a time period of (7-Horizon) timesteps. However,
as described in Algorithm 1, our approach is anytime, and
allows an agent to plan for as long as is appropriate and then
take its chosen action. This is important if the approach is to
be used as part of a sense-plan-act loop on a robot navigating
online with an unknown amount of planning time. Figure 5
shows the performance of PHOP in the 3-Exit and Corridor
scenarios as a function of the planning time given to the
agent. Even with very little time to plan, our approach results
in significantly faster performance than ORCA. As planning
time increases, the performance of the agents also increases,
reaching a plateau at around 20ms of planning time.

VI. CONCLUSIONS

In this paper, we have introduced the concept of Pro-
gressive Hindsight optimization, an anytime algorithm for
local navigation of multiple agents in dynamic environments.
Combined with the ORCA framework, our solution can plan
collision-free paths in real-time and in an anytime fashion.
We validated our approach experimentally in a variety of

environments. In all of our simulations, agents account for
the uncertainty induced by the dynamic elements of the
environment and intelligently plan a sequence of actions that
lead to time- and energy-efficient motions.

Our approach combines elements from the fields of Al
and robotics. We believe that the union of these two fields
can be beneficiary to a wide range of planning problems. Our
current solution, for example, is not applicable for navigation
in unknown environments, as it assumes that the agents
have at least partial knowledge of the environment. As such,
we are currently investigating techniques that will allow
the agents to adapt their motions in an online manner, as
they navigate through the environment. Another possibility
is to integrate PHOP with a framework that accounts for
uncertainty in the sensors and actuators [21].

REFERENCES

[11 E. Guizzo, “Three engineers, hundreds of robots, one warehouse,”
IEEE Spectrum, vol. 45, no. 7, pp. 26-34, 2008.

[2] E. Chong et al., “A framework for simulation-based network control
via Hindsight optimization,” in JEEE Conf. on Decision and Control,
vol. 2, 2000, pp. 1433-1438.

[3] S. LaValle, Planning algorithms. Cambridge University Press, 2006.

[4] T.-Y. Li and H.-C. Chou, “Motion planning for a crowd of robots,”
in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2003, pp.
4215-4221.

[5] T. Simeon et al., “Path coordination for multiple mobile robots: A
resolution-complete algorithm,” IEEE Trans. Robot. Autom., vol. 18,
no. 1, pp. 4249, 2002.

[6] T. Fraichard, “Trajectory planning in a dynamic workspace: A ‘state-
time’ approach,” Advanced Robotics, vol. 13, pp. 75-94, 1999.

[71 J. van den Berg and M. Overmars, “Roadmap-based motion planning
in dynamic environments,” IEEE Trans. Robot. Autom., vol. 21, pp.
885-897, 2005.

[8] J. Reif and H. Wang, “Social potential fields: A distributed behavioral
control for autonomous robots,” Robot. Auton. Syst., vol. 27, no. 3,
pp. 171-194, 1999.

[9] D. Helbing et al., “Simulating dynamical features of escape panic,”
Nature, vol. 407, no. 6803, pp. 487-490, 2000.

[10] J. Snape et al., “Independent navigation of multiple mobile robots
with hybrid reciprocal velocity obstacles,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2009, pp. 5917-5922.

[11] J. van den Berg et al., “Reciprocal n-body collision avoidance,” in
Int. Symp. of Robotics Research, ser. Springer Tracts in Advanced
Robotics, vol. 70. Springer, 2011, pp. 3-19.

[12] L. Kavraki et al., “Probabilistic roadmaps for path planning in
high-dimensional configuration spaces,” IEEE Trans. Robot. Autom.,
vol. 12, no. 4, pp. 566-580, 1996.

[13] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in IEEE Int. Conf. on Robotics and
Automation, 2000, pp. 995-1001.

[14] R. Geraerts, “Planning short paths with clearance using explicit
corridors,” in IEEE Int. Conf. on Robotics and Automation, 2010, pp.
1997-2004.

[15] W. van Toll et al., “Real-time density-based crowd simulation,”
Computer Animation and Virtual Worlds, vol. 23, pp. 59-69, 2012.

[16] A. Stentz, “The focussed D* algorithm for real-time replanning,” in
Int. Joint Conf. on Artificial Intelligence, vol. 14, 1995, pp. 1652-1659.

[17] M. Likhachev et al., “Anytime dynamic A*: An anytime, replanning
algorithm,” in Int. Conf on on Automated Planning and Scheduling,
2005, pp. 262-271.

[18] J. Mattingley et al., “Receding horizon control,” IEEE Control Sys-
tems, vol. 31, no. 3, pp. 52-65, 2011.

[19] C. Browne et al., “A survey of monte carlo tree search methods,” IEEE
Trans. Comput. Intell. and Al in Games, vol. 4, no. 1, pp. 1-43, 2012.

[20] S. W. Yoon et al., “Probabilistic planning via determinization in
Hindsight.” in AAAZ 2008, pp. 1010-1016.

[21] S. Patil et al., “Estimating probability of collision for safe motion
planning under gaussian motion and sensing uncertainty,” in /EEE
Int. Conf. on Robotics and Automation, 2012, pp. 3238-3244.

