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Abstract— We introduce the problem of navigating a group
of robots having prioritized formations amidst static and
dynamic obstacles. Our formulation allows users to define a
number of template formations, each with a specified priority
value. At each planning cycle, we compute a new formation
which accounts for both these priority values and the safe
progress of the robots towards their goal. To this end, we
introduce a new velocity-based navigation approach which we
denote as Formation Velocity Obstacles (FVO). Like other
velocity-based approaches, FVO allows anticipatory collision
avoidance accounting for the likely future motion of nearby
obstacles. However, we extend these previous approaches and
allow anisotropic agents which rotate themselves to orient
along their direction of travel. We integrate these FVOs with
a Bayesian framework to infer priority values for arbitrary
formations from the user-given templates. The result is a
complete framework for prioritized formation planning.

I. INTRODUCTION

Multiple robots walking together as a group while main-
taining specific configurations are nowadays commonly used
to perform critical tasks, such as search and rescue op-
erations, exploration and security patrols. In robotics, the
formation control problem has been extensively studied and
different methods have been proposed to control the dynam-
ics and stability of a group formation, including behavioral-
based approaches [1], [2], leader-follower models [3], [4],
virtual structure techniques [5], [6], social potential fields [7]
and roadmap-based methods [8], [9]. Recently, the problem
of pattern formation has also been studied, where the task
is to generate smooth and collision-free transitions between
arbitrary formations in obstacle-free environments [10], [11].

In contrast, in this work, we focus on the problem of safely
navigating a group of robots amidst static and dynamic obsta-
cles. Our approach allows the robots to deform or completely
change their formation to navigate more efficiently in the
presence of obstacles. To this end, we introduce the concept
of prioritized formations, a list of user-defined template
formations, each having a numeric priority value associated
with it that indicates the user’s preference of the formation
for the navigation task at hand.

The use of prioritized formations is motivated by the
navigational challenges that a group of robots has to face
while performing critical tasks. Consider, for example, a
team of robotic scouts sent to explore an area. Typically,
we may require the robots to walk in a tactically valuable
pattern, such as in a line formation, to gather as much
information as possible. However, in highly constrained
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settings, like a narrow passage, the robots may have to
employ a column formation so that they can still move as a
coherent group while keep exploring the area. To this end,
we propose a framework that dynamically chooses group
formations by balancing the user-defined priorities with the
constraints imposed by obstacles and other agents present in
the environments. To do so, we address two distinct aspects
of the prioritized formation navigation problem: evaluation
of arbitrary formations and guaranteed collision-free motion.

In practice, a group of robots will rarely adopt one of
the exact template formations due to obstacles, navigational
uncertainty, and other local interactions. Likewise, as a group
transitions from one formation to another, the priority value
of the transient formation will be unspecified. Therefore,
we propose a Bayesian interpolation framework to infer the
values of these emergent formations from the user specified
priorities of the template formations.

Additionally, steering a given group formation in a dy-
namic environment is a challenging task in and of itself.
Standard local navigation techniques based on the notion of
Velocity Obstacles [12], [13], provide a robust solution to the
multi-robot navigation problem and have also been used to
steer non-holonomic robots [14], [15], [16], maintain team
coherence [17], navigate swarms [18], and simulate the local
dynamics of pedestrian groups [19]. However, most of the
VO-based techniques assume that the navigating robot can
be well represented as a disc or, more recently, as a freely
rotating rectangle [20]. These assumptions, though, do not
hold for many formations, as they often have wide aspect
ratios (e.g., several robots walking line-abreast) or have a
single leader (e.g., an inversed V-like formation). In these
cases, it is important that the formation rotates to maintain
its specified orientation as its members move through the
environment. We therefore introduce the concept of for-
mation velocity obstacles (FVO) for guaranteed collision-
avoidance with static and moving obstacles. Our formulation
approximates a formation as an oriented bounding box while
accounting for the non-holonomic nature of oriented travel.
Our proposed FVO can be used to steer any anisotropic
entity; group steering is one example of its applicability.

Overall, this work has three main contributions. The first is
a mathematical formalization of the group navigation prob-
lem with prioritized formations. The second is a Bayesian
approach for evaluating arbitrary formations. Third, is the
introduction of the FVO formulation to account for the rota-
tion of formations as they navigate through the environment.

The remainder of this paper is organized as follows.
Section II formalizes our planning problem and provides an
overview of our approach. Section III presents our Bayesian



method for inferring priority values of formations and Sec-
tion IV details the FVO formulation. Section V presents
simulation results obtained with our framework and finally,
some conclusions and plans for further research are discussed
in Section VI.

II. OVERVIEW

A. Notation

Throughout this paper, we denote scalars x in lower case
italics, vectors x in lower case bold, and sets of (positional
or velocity) vectors X in upper case italics. Furthermore, we
denote a normalized vector by x̂, the perpendicular vector
of x by x⊥, and a unit vector pointing in direction θ by
υθ = [cos θ, sin θ]T . We notate an open line segment having
a and a + b endpoints as:

L(a,b) = {a + sb | s ∈ (0, 1)}, (1)

an oriented bounding box of half-height h and half-width w
centered at p and oriented towards υ as:

B(p,υ, h, w) = {p + aυ + bυ⊥ | |a| ≤ h, |b| ≤ w}, (2)

and the Minkowski sum of two sets as:

X ⊕ Y = {x + y |x ∈ X,y ∈ Y }. (3)

B. Problem Definition

We are given a group of n holonomic robots that have to
move in formation through an environment. We assume that
an expert user has provided a set of k template formations
T = {T1, . . . , Tk} and a priority value pi indicating the
desirability of each Ti, with higher priorities corresponding
to more preferred formations. Each template Ti consists of
n positions, one for each agent; we treat these templates
as “loose” formations in that any agent can occupy any
position (as long as each position is covered) and allow small
deformations of the template if needed for navigation.

The problem, then, is characterized as follows. The robots
need to reach a specified goal area while maintaining a
configuration that is as close as possible to the template
formations and avoiding collisions with each other and with
the static and dynamic obstacles present in the environment.
We assume any obstacle can be represented as an open
circular disc. Non-circular obstacles are approximated either
as a bounding disc or as a union of several discs. We further
assume that the group members move on the 2D plane and
are represented as discs.

C. Overall Approach

Following [19], we plan paths in an online fashion for
each group member using a two-phase approach. In the
first phase, we compute a new formation and collision-free
velocity for the entire group of the robots and in the second
phase, we determine a new collision-free velocity for each
robot. Both phases follow the traditional sensing-acting
cycle with time step ∆t.

Group Planning Phase: In this phase, we seek to find,
at each timestep, a formation F ∗ that balances the user’s

preferences and the collision-free progress of the group
towards its goal. Given any arbitrary formation F , we use
the following fitness function to account for such a balance:

E(F ) = pF (vF · v̂pref), (4)

where pF denotes the priority of F , vpref is the preferred
velocity of the group pointing towards the goal, and vF is
the optimal collision-free velocity that the group can obtain
when adopting F . Consequently, a formation with vF = 0
will always have a lower fitness than any other formation
that allows the group to safely progress more closer to its
goal. Similarly, given two formations with the same optimal
collision-free velocity, the one with the highest priority will
always be preferred.

Given Eq. (4), we can then formulate the group planning
phase as an optimization problem of selecting at each time
step a new optimal formation F ∗ for the group. To find such
a formation, we would ideally optimize over all possible
formations that a group can adapt. However, in all of our
experiments, it was sufficient to evaluate only the template
formations and the current configuration of the robots.
Strategies for evaluating a broader selection of formations
are discussed in Section VI. Furthermore, to evaluate the
fitness of any given formation, we should be able to infer
its priority (if it is not a template formation) and compute
its optimal collision-free velocity. We address these issues
in Section III and Section IV, respectively.

Robot Planning Phase: In the second phase of our approach,
we use the new optimal formation of the group and its
corresponding collision-free velocity to plan the individual
motions of the group members. In particular, F ∗ is oriented
towards its new direction of travel and extrapolated into the
near future, as in [19]. The extrapolated formation determines
the new intermediate goals for the robots. This essentially
becomes a pattern matching problem of the style proposed
in [11], where n robots have to transition from their current
to a new formation in a collision-free manner. Each robot is
given a goal position in the new formation which minimizes
the overall displacement of the robots. This goal then defines
the new preferred velocity for the robot which serves as input
to the robot’s local navigation routine. In our framework,
we use the ORCA navigation routine [13], which efficiently
computes an optimal collision-free velocity that is as close
as possible to the preferred one.

Because the group planning phase of our approach is the
major novelty, we will focus on that phase in the rest of this
paper. We refer to [11], [19] for more details regarding the
robot planning phase.

III. BAYESIAN FORMATION INTERPOLATION SCHEME

To evaluate a given formation F , we must be able to
infer its priority value from the set of template formations
T . Within the context of the prioritized navigation, such
inference must meet three important criteria. First, if a
formation matches exactly one of the template formations,
it should have the exact same priority as that template



α1 + α2 + N (0, σ2) =

Fig. 1. Defining Arbitrary Formations We can decompose any arbitrary
formation into a linear combination of the user provided template formations
T plus some noise. For example, the staggered formation on the far right is
a combination of the line-abreast and column formations with a1 = 0.56
and a2 = 0.43, respectively, and σ = 0.08.

formation. Second, no formation can have a higher priority
than that of the top ranked template formation. Thus, in the
absence of constraints, the robots will always follow the
highest priority template. Third, formations that are very
close to one of the template formations should receive a
priority value very close to the priority of that template. This
allows for small deformations in the group’s formation when
needed for navigation.

To satisfy these criteria, we formulate the problem of
determining pF as a Bayesian inference problem. In our
framework, we use this Bayesian scheme to determine the
weight of the current group formation. However, this ap-
proach can be applied to any arbitrary formation. Given
a formation F , we assume it can be defined as a convex
combination of the k provided templates in T , plus some
(Gaussian) noise:

F = a1T1 + · · ·+ akTk +N (0, σ2), s.t

k∑
i=1

ai = 1, (5)

where ai ≥ 0, and σ denotes the standard deviation of the
noise. We can interpret ai as the proportion of the formation
F that can be explained by the templates Ti. The size
of σ determines how well F is captured by the weighted
linear combination of the templates. An example of this
decomposition is given in Fig. 1.

Given the weights ai, we can infer the value of the
formation’s priority as follows:

pF = a1p1 + a2p2 + · · ·+ akpk − γσ, (6)

where the term γ is used to weight how much deformation
away from the provided templates is penalized. Evaluating
Eq. (6) depends on inferring the set of values a1, . . . , ak and
σ which are most likely given F :

argmax
a1,...,ak,σ

P (a1, . . . , ak, σ|F ) (7)

= argmax
a1,...,ak,σ

L(F |a1, . . . , ak, σ) + L(a1, . . . , ak) + L(σ),

where L(·) denotes the log likelihood function.
Assuming all template formations and all valid values for

a1, . . . ak, σ are equally likely, then Eq. (7) is reduced to
maximizing the first log likelihood term. We can model this
term as the sum of the pairwise distances between the posi-
tions of the robots in formation F and their corresponding
positions in the formation implied by the estimated parame-
ters a1, . . . , ak. Let D(F, a1T1+. . .+akTk) be this distance.

Following from the definition of a Gaussian distribution, we
can therefore formulate our inference problem as:

argmax
a1,...,ak,σ

−[D(F, a1T1 + . . .+ akTk)]2

σ2
. (8)

Because the template formations do not specify an ordering
of the robots, when computing D, we must take the addi-
tional step of finding the best matching between the positions
of robots in F and the templates Ti.

We use the Expectation-Maximization algorithm to solve
Eq. (8). After being initialized with a guess for values
of a1, . . . , ak and σ, the algorithm proceeds in two steps.
First, it computes a1, . . . , ak values that maximize the log-
likelihood of the formation F (assuming a given value of σ).
Then, these values are used to compute the most likely value
for σ. Such value is computed directly from the standard
deviation of the distance D. We keep alternating between
the two steps until convergence.

IV. ORIENTED FORMATION PLANNING

Given a formation F , we need to be able to determine
its best possible collision-free velocity vF in a manner
which accounts for the formation reorienting itself along
its direction of travel. We assume that the group has a
preferred speed and direction which we denote as vpref .
Then, we define the optimal velocity as the velocity which
is as close as possible to vpref while still avoiding all
upcoming collisions. We can combine this velocity vF with
the formation’s weighting pF (as computed in Section III) to
evaluate its fitness using Eq. (4).

A. Rotationally-invariant Velocity Obstacles

Our approach to computing vF builds on the concept of
Velocity Obstacles (VO) introduced in [12]. More formally:

Definition 1. The velocity obstacle V OτA|O between a
robot A and a (moving) obstacle O is the set of all relative
velocities of A with respect to O that will result in a
collision between A and O before some time horizon τ .

Previous work has defined VOs for rotationally-invariant
robots (e.g., discs) or robots which translate without rotating
[12], [14], [13]. However, such a formulation is not particu-
larly appealing to group formations as it leads to overly-
approximated VOs. Hence, many collision-free velocities
will be characterized as inadmissible and cannot be selected
by the group, while in other cases, a VO cannot be even de-
fined (see Fig. 2). Furthermore, in a traditional, rotationally-
invariant VO, an obstacle’s velocity can be accounted for
by moving the apex of the VO to lie at the obstacle’s
velocity. However, such a strategy cannot be employed
for an anisotropic formation because the absolute velocity
determines the orientation of the formation (not the relative
one). To address these issues, we define below the formation
velocity obstacles.
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Fig. 2. Collision Avoidance Using Velocity Obstacles. (a) A rotationally-invariant VO that approximates F as disc to avoid a static obstacle O. (b) The
FVO for the same configuration allows more flexibility in the velocities that a formation can take leading to more efficient motion. (c, d) The obstacle is
very close to the formation and no traditional VO could be defined. However, a well-defined FVO exists in these scenarios. (e) FVOs induced by dynamic
obstacles are more complex, having non-linear boundaries.

B. Formation Velocity Obstacles

We derive a new VO formulation that explicitly accounts
for the rotation of a formation as it aligns to its direction of
motion. Rather than plan for the exact formation, we consider
the bounding box that encloses all robots in the formation.
For ease of notation, throughout the rest of this section, we
will refer to this box as F . Let wF and hF denote the half-
width and half-height, respectively, of F where the width is
defined along the axis perpendicular to the direction of travel.
Without loss of generality, we assume that F is centered at
the origin and oriented along the positive y-axis. Formally,
F = B(0, [0, 1]T , hF , wF ) as defined in Eq. (2).

Then, for a given orientation υθ, the formation velocity
obstacle is defined as follows:

Definition 2. The formation velocity obstacle FV Oθ,τF |O
(read: the formation velocity obstacle for F induced by O for
time horizon τ and orientation θ) is the set of all velocities
of F that will result in a collision between F and O before
time τ , assuming F instantaneously rotates to lie along υθ.

More formally, let pO be the position of the obstacle O
having radius rO. Let also w = wF +rO and h = hF + rO be
the half-width and half-height, respectively, of the oriented
bounding box enclosing the Minkowski sum O⊕−F . Then,
we can conservatively approximate the FVO by performing
an OBB-point swept test (see Fig. 3b). For a given orientation
υθ, a velocity v = κυθ, κ ∈ R leads to a collision at some
time t only if the following two conditions are met:

|(pO + tvO) · υ⊥θ | < w (9)
|(pO + tvO − tv) · υθ| < h (10)

From Eq. (9) the following lower t− and upper bounds t+

on t can be defined:

t± =
±w − pO · υ⊥θ

vO · υ⊥θ
. (11)

Dividing Eq. (10) by t and rearranging gives:

(
pO · υθ − h

t
+m)υθ < v < (

pO · υθ + h

t
+m)υθ, (12)

where m = vO ·υθ. Equation 12 defines all velocities v that
will lead to a collision between F and O for a given θ.
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Fig. 3. Dynamic Obstacles. (a) An obstacle O moves in front of the
formation F . (b) For a given orientation υθ , the set of velocities that lead
to a collision between F and O lies along a line segment. (c) The resulting
FVO can be found as the union of all line segments. Here, we sample
the segments using a separation in orientation of 1.8◦. The green segment
corresponds to the orientation shown in (b).

Hence, the formation velocity obstacle for all orientations
θ ∈ [−π, π] is a collection of line segments:

FV OτF |O =
⋃

θ ∈ [−π, π]
t ∈ (0, τ)∩(t−, t+)

L

(
(
pO · υθ − h

t
+m)υθ,

2hυθ
t

)
.

(13)
This equation defines a full FVO valid over all orientations
θ. Formally:

Definition 3. The formation velocity obstacle FV OτF |O for
F induced by an obstacle O is a union of line segments as
defined in Eq. (13).

By connecting the end points of the line segments, an
explicit representation of the boundary of the formation
velocity obstacle can be obtained. We refer the reader to
Fig. 3 for an example. We can similarly compute the bound-
ary of the formation velocity obstacle when O is static by
setting vO = 0 in Eq. (13). However, in this case, a closed
form expression can also be obtained for the boundary, as
discussed in the Appendix and shown in Fig. 2.

C. Choosing a Collision-free Velocity

Having computed the FV OτF |O for each static and dy-
namic obstacle present in the environment, we need to
determine an optimal new velocity vF for the formation
F that lies outside the union of FVOs. We also assume
that the group members and, subsequently, F , are subject
to a maximum speed constraint vmax modeled as a disc
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Fig. 4. Multiple Obstacles. (a) A formation F navigating amidst multiple
moving obstacles. The arrows indicate current velocities. (b) The FVOs
induced by the obstacles for infinite time horizon. The white region denotes
the set of safe new velocities for F , and vF is the optimal new velocity.

C(0, vmax) centered at the origin of the velocity space).
Consequently the set of feasible velocities CAF that F can
choose (Fig. 4) is :

CAF = C(0, vmax) \
⋃
O

FV OτF |O. (14)

Additional constraints on velocity or acceleration can be
similarly incorporated to the FVO formulation in a similar
manner or applying after-the-fact to the derived velocities.

Given the set CAF , the optimal formation velocity vF is,
then, the allowed velocity closest to the preferred one vpref :

vF = arg min
v∈CAF

‖v − vpref‖. (15)

Solving Eq. (15) is a difficult non-convex optimization
problem. However, an approximate solution can be efficiently
computed using 2D linear programming following the ap-
proach presented in the ORCA navigation framework [13].
Here, each VO is approximated by a single linear constraint
that lies tangent to the VO at the point closest to the preferred
velocity. Assuming all VOs are convex, the ORCA approach
provides a conservative approximation which still guarantees
to avoid all collisions while running in linear complexity
in the number of VO constraints. In our case, since the
FVOs are typically non-convex (e.g., Fig. 3), we consider the
orthogonal projection of the preferred velocity on the bound-
ary of each FVO for the ORCA linearization [21]. The vF
computed in Eq. (15) is combined with Eq. (4) to determine
the target formation for the robots having the highest overall
score. Since we assume that F can instantaneously rotate,
there may be collisions as the robots transition between their
current formation to the new one. Such collisions are handled
individually by the robots using ORCA as explained in the
Robot Planning Phase of Section II-C.

V. EXPERIMENTS AND RESULTS

We implemented our framework in C++ and ran several
simulated experiments over a variety of scenarios spanning
several different types of formations, different group sizes,
and different types of environments. During the EM opti-
mization of Eq. (8) we used 500 steps of a stochastic gradient
descent approach based on simulated annealing and 2 EM

Fig. 5. Formation Rotation. A formation modeled as an oriented,
isosceles, triangle has to navigate through a narrow passage. Only by rotating
in the direction of travel (as allowed by FVO) can the formation fit through.
Here the maximum angular speed is capped to π/3 rad/sec.

loops. For determining the FVOs, as specified by Eq. (13),
we discretized the boundaries in 200 segments of 1.8◦ and
set the time horizon to 5 s. All simulations ran in realtime
(over 100 fps) on an Intel 2.4 GHz Core 2 Duo processor (on
a single thread). This section highlights several key example
scenarios and performance results. Simulation videos are
available at http://motion.cs.umn.edu/r/FVO/.

A. Formation Rotation

By using our newly proposed FVOs, we can allow forma-
tions to reorient themselves to be aligned to their direction of
travel. The advantage of this approach can be clearly seen in
Fig. 5. Here, a triangle-shaped formation has to move through
a narrow passage. Since no other template formation is given,
if the triangle does not rotate, it will not fit through. The
same applies if a disc rather than a bounding box is used to
compute the velocity obstacles induced by the environment.

B. Dynamic Formation Weighting

The Bayesian formation weighting scheme allows us to
infer values for arbitrary formations given a small number of
user-weighted template formations. The user-selected param-
eter γ has an important effect on how arbitrary formations
are weighted. The effect of this parameter can be seen in the
Squad scenario shown in Fig. 6. Here a group of four agents
must navigate past various buildings while maintaining squad
formations such as walking in a line-abreast or a column

(b)(a)

Fig. 6. Effect of γ parameter. Agents navigate through a passage given
two formations: line abreast and single column. (a) With a small value of γ
agents adopt an ad-hoc formation which fits the obstacle. (b) With a larger
value of γ agents follow very closely the single column formation.



Fig. 8. Circle Scenario. A group of twenty agents navigates through a static environment while maintaining one of a three user-defined template formations
with various priorities: a large circle (p=9), two smaller circle (p=6), and a single small circle (p=1). By using our approach, agents automatically choose
the highest priority formations that avoid collisions, smoothly transition between formations, and can dynamically reorient and deform the formations as
needed for navigation.

(a) (b) (c)

Fig. 7. Dynamic Obstacle Comparison. Our approach allows for
navigation of formations amongst dynamic obstacles. (a) With fast moving
obstacles the formation has to deform to avoid collisions. (b) Little deforma-
tion is needed with slower obstacles. (c) Even with slower obstacles, purely
distributed planning methods such as ORCA fail to maintain formation.

formation. As the robots approach the narrow passage they
must abandon the highly weighted line-abreast formation to
fit. With a large value for γ the robots collapse down to
the single column formation, with a small value the robots
maintain an ad-hoc staggered formation that is not near to
either of the input templates.

C. Dynamic Obstacles

Our approach is able to account for the motion of dynamic
obstacles in the environment. In the scenario shown in Fig. 7,
agents are given the goal of walking in a box formation
past a series of moving discs. When the disc obstacles are
moving quickly (Fig. 7a), the agents must deform their box
shape in order to maintain a collision-free trajectory. When
the discs are moving more slowly (Fig. 7b), the agents can
avoid collision without deformations. When ORCA is used in
the same scenarios, the agents successfully avoid collisions,
but fail to maintain a cohesive formation (Fig. 7c).

D. Navigation with Roadmaps

Our approach extends to simulations of multiple agents
navigating with complex formations in multi-obstacle envi-
ronments where roadmaps may be needed. An example of
roadmap-based navigation is shown in the Circle scenario
depicted in Fig. 8, where a group of 20 agents follows
a roadmap to move through a bent corridor in a variety
of circularly shaped formations. In this scenario, the top
priority formation is a large circle, which is too big to fit
in the hallway. While the large circle deforms at first, the

TABLE I
PERFORMANCE ANALYSIS ON DIFFERENT SCENARIOS

Scenario # Agents # Obstacles Total Time per
time (s) frame (ms)

Squad 4 12 0.078 0.394
Dynamic Obstacles 16 40 0.335 0.914
Circle 20 60 1.248 1.259

agents soon adopt the second ranked formation of a double
circle which can fit in the hallway undeformed. However, this
formation is still too wide to turn the corner, so agents must
then adapt their configuration to the least preferred formation
of a tightly packed circle. After making the turn, the group
reorients itself to walk down the rest of the corridor in the
double circle formation.

E. Performance

In all scenarios, agents navigated successfully to their
goals while avoiding collisions with each other and the envi-
ronment. The path for all robots were computed in realtime
(see Table I). This is consistent with the polynomial theoret-
ical runtime expectations of our approach. The constrained
optimization problems generated by FVO can be solved in
O(kn) randomized expected time, where n is the number of
constraints (static + dynamic obstacles), and k the number
of formations that the group evaluates. For the Bayesian
formation weighting, every formation evaluation starts with
determining the best assignment between the current agent
positions and each of the template formations. Each of these
matching problems can be solved in polynomial time O(n3)
[22], where n is the number of group members. Since,
though, Eq. (8) is only computed once per time step, it does
not affect the real time performance of our approach.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have introduced the concept of prioritized
formations for guiding a group of robots amidst static and dy-
namic obstacles. Our approach plans over a joint formation-
velocity space employing a Bayesian scheme for evaluating
the priority values of formations and the notion of formation
velocity obstacle that accounts for the anisotropic nature
of rotating formations. It produces convincing collision-free
motions for the group and runs in real time.

In the future, we would like to address several limitations
of our approach. Currently, we conservatively approximate



the space that a formation occupies with a bounding box.
While this approximation is sufficient for many scenarios,
a more complex representation that considers the convex
hull of the robots can potentially generate a further range of
motions, particularly in highly dense settings. Additionally,
in our current implementation, a group does not sample
broadly over all possible formations that it can adopt. More
formations to evaluate can be obtained by blending between
the template formations or sampling over a representative
formation derived from the templates.

Our current results have been presented on simulated
agents; to implement our approach on a team of physical
robots, a leader robot must be chosen to compute the
high-level formation plan. Thus, in the future, we would
like to develop a more fully decentralized approach. Other
interesting areas for further development include allowing
the automatic splitting and merging of a group into multiple
formations [23], as well as combining our prioritized local
planner with a global planner that considers the feasibility
of group formations [24]. We would also like to model
interactions between multiple groups by deriving an FVO-
based formulation for reciprocal collision avoidance. Another
potential application is to use our velocity obstacle formula-
tion for non-holonomic robots, such as cars. This will require
accounting for kinodynamic constraints as well as further
extending our formulation.
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APPENDIX

A closed form solution exists for determining the
FV OτF |O boundaries for a formation F induced by a static
obstacle O positioned at pO. Let w, h denote the half-width
and half-height, respectively, corresponding to the (oriented)
bounding box that encloses the Minkowski sum O⊕−F (see
Fig. 2b). Let us also consider a ray λ = sυ, s ≥ 0, starting
at the origin and heading in the normalized direction υ. The
problem can then be formulated as finding the direction υ
such that the heading of the oriented bounding box is aligned
with υ. This leads to the following solution:

υ± =

[
` ±w
∓w `

]
pO
‖pO‖2

s± = h± `, (16)

where ` =
√
‖pO‖2 − w2. The positive solution leads to

the right boundary (υ+) of the FVO; using the negative
solution, the direction υ− of the left boundary is obtained.
The resulting FVO is a truncated cone with its apex at the
origin and its sides tangent to the disc of radius w centered
at pO. See Fig. 2b.

The same approach can be employed to compute the FVO
when the distance between the obstacle and the formation
is less than w as in Fig. 2c. It can be easily shown that the
boundaries of the resulting FVO are perpendicular to the two
tangents from the origin to the disc centered at pO having a
radius of h.


